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Introduction

Empirical food web

Figure: La Grande Caricaie, Switzerland
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Introduction

Feasibility in two-level food web
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Figure: Equilibrium abundances for a two-level food web. Two producers and one
consumer. The network is feasible if all species equilibrium values are positive.

Interspecific competition coefficient a < 0.

Intraspecific competition coefficient q < 0.
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Introduction

Feasibility in two-level food web
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Figure: Equilibrium abundances for a two-level food web. Two producers and one
consumer.

When the inter-specific competition coefficient is too large, the consumer’s
equilibrium solution to the associated Lotka-Volterra differential equation
becomes negative: the equilibrium is unfeasible.
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Introduction

Food web and adjacency matrix
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Introduction

The Bridge Brook Lake matrix

Comput. biol. group (Fribourg) Feasibility of equilibria in large ecosystems Marne-la-Valée, 2019 6 / 39



Introduction

Web topology and interaction strengths

What are the roles of web topologies and interaction strengths on feasibility
and stability.

There is no clear answer at present time. All observed empirical webs exhibit
similar topological properties. Usually biologists think that web topologies play
a fundamental role, while other state that the topology only plays a marginal
role...

Concerning the role of interaction strengths for complex webs, weak interaction
strengths seem to enforce stability and feasibility. But no clear view point on
this question

At present time, analytical results have been only obtained for random
unstructured webs with random interaction weights.
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Introduction

Complex random predator-prey networks
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Figure: Three network mathematical model for predation. (a-b) Unstructured networks.
(c-d) Cascade model. (e-f) Niche model, which have designed to mimic the topologies
of empirical webs
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Introduction

Web topologies
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Random unstructured webs: Random graphs of Erdös-Renyi type
where the probability that any edge is present is given by
C = L/S(S�1), where L is the total number of edges.

Structured networks: Random webs obtained from the cascade, niche,
nested-hierarchy models and from empirical data.
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Introduction

The cascade model (Cohen, 1985)
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Introduction

The cascade model

The cascade model is stochastic: species can only consume prey of lower rank
with some probability which is the same for all species. The related adjacency
matrices are upper triangular, with no cannibalistic loop and no circuits. Cohen
discovered an excess of non-triangulated webs compared to observed
food-webs.
The cascade model poorly reproduces the structure of highly resolved
food-webs.
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Introduction

The niche model (Martinez, 2000)
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Introduction

Stochastic niche models and beyond

Based on the assumption of a single trophic niche dimension

Produce contiguous diets for all species and interval food-webs

Able to reproduce closely many empirical patterns

Major improvement of the cascade model but

Contiguous diets are never observed in observed food-webs.

Besides the cascade and the niche models, the nested-hierachy model (Cattin,
2004) and and a model of Rossberg (2005) take evolutionary of food-webs

into account and relaxes the intervality of the diets of the niche model. We will
also use observed food-webs.
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Introduction

The Bridge Brook Lake matrix

Comput. biol. group (Fribourg) Feasibility of equilibria in large ecosystems Marne-la-Valée, 2019 14 / 39



Introduction

Bridge Brook Lake matrix fitting
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Introduction

Lotka-Volterra dynamical systems on complex networks
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For each realization of the random network, consider the following system of
differential equations

dx

i

dt

= x

i

⇣
r

i

+qx

i

+

1
(CS)

d Â
j

a

ij

x

j

⌘
.
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Lotka-Volterra dynamics

Lotka-Volterra dynamical systems on complex networks

dx

i

dt

= x

i

⇣
r

i

+qx

i

+

1
(CS)

d Â
j

a

ij

x

j

⌘
,

where

a

ij

: per capita effect of species j on species i

r

i

: intrinsic growth rate of species i

q: coefficient reflecting intraspecific competition

C: connectance= number of observed links divided by the number of
possible links

d: scaling factor modelling interaction strength
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Lotka-Volterra dynamics

Interaction weights

In most empirical network, both the growth rate vector r and the interaction

matrix A are unknown

A possible method for overcoming this problem, which is of common use in
statistical mechanics, consists in assuming that both r and the matrix A are
random.

This method has been used in practical situations for example to predict the
effect of introducing a new species to an ecosystem (which can be very risky),
see, e.g. Baker et al., Conservation Biol. 2016.
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Lotka-Volterra dynamics

Interaction strength

The interaction strength coefficient 0 < d  1 defines three regimes:

Strong interaction strength: d < 1/2.

Moderate interaction strength: d = 1/2.

Weak interaction strength: d > 1/2.

The moderate regime d = 1/2 corresponds to the classical random matrix
model of Wigner.
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Lotka-Volterra dynamics

Lotka-Volterra dynamical systems on complex networks

dx

dt

= x �
⇣

r +(qid+

1
(CS)

d A)x

⌘
.

One first looks at the equilibria x

⇤ which solve the system

0 = x

⇤ �
⇣

r +(qid+

1
(CS)

d A)x

⇤
⌘
,

and then looks for its feasibility and its stability properties as a function of both
r and A.
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Feasibility and stability of LV dynamics

Feasibility and stability of equilibria

An equilibrium solving the equation

r +(qid+

1
(CS)

d A)x

⇤
= 0,

is feasible when x

⇤
i

> 0, 8i . It is linearly stable when the Jacobian matrix

(the community matrix)

J(x

⇤
) = diag(x

⇤
)(qid+

1
(CS)

d A),

has eigenvalues of negative real parts.
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Feasibility and stability of LV dynamics

May’s stability criterion

The consensus that complexity (e.g. large values of S) begets stability

(McArthur, 1955) was challenged by Levins, Ashby, Gardner and May in

the seventies. May focused on random unstructured random webs with
random weights a

ij

such that a

ii

⌘ 0, and used results from random matrix
theory when d = 1/2 to study the spectrum of the random matrix

˜

J = qid+

1
(CS)

d A.

The associated eigenvalues have negative real parts when

s
(CS)

d

p
CS < |q|,

which is the well known May’s stability condition.
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Probability of feasibility

Feasibility

Let
B := (qid+

1
(CS)

d A), so that x

⇤
=�B

�1
r .

The probability of feasibility is defined by

P

S

= P

A,r (x
⇤
=�B

�1
r > 0),

when A and r are chosen at random. When A is fixed and r is random, we
denote it by

P

r

(B

�1
r < 0).
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Probability of feasibility

Feasibility

Then

P

S

=

Z
’

i

⇥(�(B

�1
r)

i

)f (B)g(r)dBdr = E
B

(P

r

(B

�1
r < 0)),

where f (resp. g) is the density of the random matrix B (resp. of the random
growth rate vector r ). ⇥(x) = 1 when x > 0 is zero otherwise.
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Probability of feasibility

Solid feasibility angle

Rohr et al. (2014) and Grilli et al. (2017) focused on the solid angle associated
to the feasibility cone (figure from Grilli (2017))

K (B) = {r 2 RS

; B

�1
r < 0},

Figure: From Grilli et al. (2017)
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Probability of feasibility

Solid feasibility angle

The solid angle is defined by

⌅(B) = 2S

Vol

S�1(K (B)\SS�1
)

Vol

S�1(SS�1
)

,

where the factor 2S is introduced to ensure that ⌅= 1 when species do not
interact. They studied analytically the mean field case where all the coefficients
a

ij

, i 6= j are constant and equal to some E1. They then performed simulations
and showed that the mean field case provides a nice approximation to the
random case (when B is random and is associated to a Erdös-Renyi random
graph with random i.i.d. interaction weights.
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Probability of feasibility

Solid feasibility angle and probability of feasibility

Let r be a spherically symmetric random vector. Then

P(r 2 K (B)) = P(

r

||r || 2 K (B)\SS�1
),

with r/||r || uniform on the sphere SS�1. Hence,

P

r

(B

�1
r < 0) = P(r 2 K (B)) =

1
2S

⌅(B).

Choosing r to be a standard multivariate gaussian random vector of density g,
one obtains

⌅(B)/2S

=

Z

Rs

’
i

⇥(�(B

�1
r)

i

)g(r)dr = P

r

(B

�1
r < 0),
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Probability of feasibility

Solid feasibility angle and probability of feasibility

⌅(B)/2S

=

p
|G|

p
2pS

Z

Rs

’
i

⇥(z

i

)exp(�1
2

z

T

Gz)dz, G = B

T

B.

For random B, the mean solid angle is a probability of feasibility P

S

P

S

= P

A,r (B
�1

r < 0) = E
B

(⌅(B))/2S.

The average value for random B of the solid feasibility angle is given by P

S

for
i.i.d. standard normal N(0,1) random growth rates r

i

.

A natural question consists in checking the concentration of the law of ⌅(B)
around its mean value P

S

for random B. Similar problems have been studied
for disordered systems like spin glasses.
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Probability of feasibility

Computation of the feasibility probability: mathematical side

The probability of feasibility has been studied for the various (unstructured)
models by several authors (e.g. by Stone (1988,2017), Bunin(2017),
Dougoud(2018) and ...). Some authors use approximations to compute B

�1
r ,

which are based on the first term of the Neumann expansion of B

�1
r , or on the

cavity method from statistical mechanics (spin glass theory). These methods
have been validated numerically.

We used a fully rigorous method which is adapted from Geman(1982). The
method uses the full Neumann series expansion of B

�1
r and the moment

method from random matrix theory. Many related mathematical problems
remain however open.
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Feasibility for random unstructured webs

Feasibility for random unstructured webs

In Dougoud et al. (2018), we focus on the moderate interaction strength regime
d = 1/2, and assume that the underlying random graph is of Erdös-Renyi type.
Using previous results of Geman(1982) on solutions to systems of random
linear equations, we have proven that if

the random growth rates r

i

are i.i.d., independent of A,

the entries a

ij

are i.i.d. centred,

E(r2
)E(a2

11)< q2/4,

then the equilibrium x

⇤
is composed of asymptotically independent

gaussian random variables of mean µ and variance

ˆs2 given by

µ =�E(r1)

q
,

ˆs2
=

Var(r1)

q2 +

E(r2
1 )s2

q2
(q2 �s2

)

.
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Feasibility for random unstructured webs

Sketch of proof

We follow Geman (1982) and suppose that r = 1 = (1, · · · ,1)T , q =�1, C = 1
and assume that d = 1/2. The equilibrium equations becomes

x

⇤
= 1+

Ap
S

x

⇤,

so that
x

⇤
= (Id� Ap

S

)

�1
1.

The idea is to consider the geometric series to arrive at the approximation

x

p

= 1+

p�1

Â
k=1

⇣
Ap
S

⌘
k

1,

and to control the difference e

p

= x

⇤ � x

p, as p ! •.
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Feasibility for random unstructured webs

For given l
i

, i = 1, · · · ,m, Geman considered characteristic functions and
showed that

E(exp(i
m

Â
j=1

l
j

x

⇤
j

))�! exp(i

m

Â
j=1

l
j

� s2

1�s2 Â
j

l2
j

).

The idea is to first show that Âm

j=1 l
j

x

p

j

converges in law to a normal distribution
using the method of moments, and to next prove that

limsup

p!•
limsup

S!•
P(|

m

Â
j=1

l
j

e

p

j

|> e) = 0,

8e > 0.
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Feasibility for random unstructured webs

Probabiliy of feasibility for large random unstructured webs

We also obtained that, under the same hypotheses,

0  P

S

⇠ �(

E(r1)

ˆs
)

S,

where � is the standard gaussian cumulative distribution function.
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Figure: Plot of P

S

for increasing species numbers S. Predictions for random
mutualistic networks, random competitive networks, random predator-prey networks,
the cascade model, the niche model, and the nested-hierarchy model.
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Feasibility for random unstructured webs

Stability and feasibility
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Feasibility for random unstructured webs

A feasibility phase transition for moderate interaction
strength and gaussian weights

In a recent work, Bizeul and Najim (2019) consider random LV linear systems
of the form

1� x

i

+

1
a

S

S

1/2 Â
j

a

ij

x

j

⌘ 0,

where a
S

! • as S ! •. Let a⇤
S

=

p
2 ln(n). They proved the following

phase transition phenomenon for centred standard gaussian weights a

ij

:
If there exists e > 0 with a

S

 (1� e)a⇤
S

, then the solution of the above
linear system is such that

P(minx

i

> 0)�! 0,

S ! •.
If there exists e > 0 with a

S

� (1+ e)a⇤
S

, then

P(minx

i

> 0)�! 1.
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Feasibility for random unstructured webs

Weak interactions d = 1, unstructured webs

Following Dougoud et al. (2018), assume that

d = 1,

The entries a

ij

are i.i.d. of mean Cµ
A

with |µ
A

|< |q|,
the growth rates are bounded,

Assuming some moment condition, we have proven that, as S ! •, the limiting
equilibrium x

⇤ is deterministic with

x

⇤
i

=

r

i

|q| +
µ

A

|q|(|q|�µ
A

)

¯

r ,

where ¯

r is the arithmetical mean of the r

i

. If r

i

� µ
A

/(µ
A

+q)¯r , then x

⇤ is
feasible with probability one.

Comput. biol. group (Fribourg) Feasibility of equilibria in large ecosystems Marne-la-Valée, 2019 36 / 39



Structured webs

Probability of feasibility: Summary

Table 1. Summary of the different results presented on PS for S → ∞.

Dougoud M, Vinckenbosch L, Rohr RP, Bersier LF, Mazza C (2018) The feasibility of equilibria in large ecosystems: A primary but 
neglected concept in the complexity-stability debate. PLOS Computational Biology 14(2): e1005988. 
https://doi.org/10.1371/journal.pcbi.1005988
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005988

Figure:
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Structured webs

Weak interactions, law of x

⇤ for structured webs
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Structured webs

Weak interactions, law of x

⇤
i

and trophic level
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Figure: The equilibrium abundances are deterministic for the random unstructured
webs and for the cascade model, while abundances are random for the niche and the
nested-hierarchy random web models. The species abundance variance depends on
trophic level, with high variances for top predators and low variances for basal species.
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