

Improving the realism of predator-prey and food web models to understand complex plankton food web dynamics

Ursula Gaedke Barbara Bauer, Alice Boit, Ruben Ceulemans, Elias Ehrlich, Nadja Kath, Toni Klauschies, Ellen van Velzen & Christian Guill

University of Potsdam, Germany

Gefördert von der Deutschen Forschungsgemeinschaft

High dimensional differential equation models failed to reproduce observed dynamics of edible algae and ciliates

Structure of talk: no L.V. models, no randomness L J ?!

- 1. Lake Constance: Data and food web structure
- 2. Quantitative mass-balanced food webs
- 3. Improve the ATN model to predict seasonal dynamics
- 4. Food webs are not static but highly flexible: Biomass trait feedbacks between predator and prey relevant in nature and models

Lake Constance data

- Large (500 km²), deep (z_{mean} = 101 m), north of Alps
- Approx. weekly plankton sampling
- Biomass of all plankton groups, e.g. 20 years (> 800 sampling dates) 36/ >100 phytoplankton species + 12 years (n=455) 24 ciliate species
- Primary and bacterial production

directly measured

• Production and diet composition of

consumers estimated

The data are partly available in "LakeBase" (https://fred.igb-berlin.de/Lakebase) or contact me J

Lake Constance food webs, mass-balanced in C & P (food quantity and quality) including C & P recycling 1987-1993

59 webs are available (7 years, seasonally resolved) contact me J

Program to mass-balance meaningfully: Hart, Stone, ... Gaedke 1997 J

Stability of observed webs is larger than of random webs

Seasonal and interannual changes in food web stability obtained from the community (Jacobian) matrices. Full line: observed, broken line: random web

De Ruiter et al., in prep.

Fluxes differ in their relative importance à use Weighted Connectance & flux diversity!

Binary connectance = proportion of realized links to total feasible links

- à Weighted connectance incorporates strength of links (Boit & Gaedke 2014 PLoS ONE)
- à I consider findings from the LC binary webs unrealistic (Gaedke 1995)

Predicting seasonal dynamics in L. Constance with a general allometric trophic network (ATN) food web model with 24 guilds

ATN model: simple bioenergetics for autotrophs & all consumers based on allometry (except for bacteria) à few free parameters, generalizable, theory development (e.g. Yodzis & Innes 1992, Williams et al. 2007)

Boit et al. Ecol. Lett. 2012

Bioenergetic ATN model

Original ATN model: Dynamics quantitatively wrong, too fast, too strong

Adding 3 improvements...

Two types of respiration: Activity & basal respiration

<u>Activity respiration</u>: Proportional to **ingestion/ production** (hunting ...), relative important for invertebrates (up to 100 x basal respiration)

Basal respiration: Used for maintenance à proportional to **biomass**, very important for mammals & birds but not for invertebrates

Two types of respiration: Activity & basal respiration

<u>Activity respiration</u>: Proportional to **ingestion/ production** (hunting ...), relative important for invertebrates (up to 100 x basal respiration)

Basal respiration: Use for maintenance à proportional to **biomass**, very important for mammals & birds but not for invertebrates

Activity respiration à growth efficiency à trophic structure & energetics of food webs (e.g. top heaviness) à get them ≈ realistic!

Kath et al. 2018 Theoret. Ecol.

ATN model performance: Production observed & modelled

Model performance: Biomasses observed & modelled

Phases: **2** = early spring, **3** = late spring, **4** = CWP, **5** = summer, **6** = autumn

Good fit required recycling of C & nutrients, activity respiration, and prey defence at high predation pressure (modelled via predator interference)

Model performance: Biomasses observed & modelled

Phases: **2** = early spring, **3** = late spring, **4** = CWP, **5** = summer, **6** = autumn

Good fit required recycling of C & nutrients, activity respiration, and prey defence at high predation pressure (modelled via predator interference)

Nutrient cycling matters also for the dynamics of small predatorprey systems

Rosenzweig MacArthur Model

light limitation of the prey

- "free" capacity depends only on prey
- predators affect prey through grazing only

"Mass-balanced" Rosenzweig MacArthur Model

nutrient limitation of the prey

- predators **AND** prey contain nutrients
- predators affect prey through grazing and nutrient retention

"Mass-balanced" Rosenzweig MacArthur Model

 predators affect prey through grazing and nutrient retention

20

mg P m

Stability of predator-prey dynamics

Nutrient retention stabilizes predator-prey dynamics by effectively reducing the carrying capacity of the prey!

Stability of predator-prey dynamics

Nutrient retention may hamper species coexistence through fluctuation-dependent mechanisms by stabilizing dynamics

First conclusions

- For 7 years seasonally resolved food webs (n=59): Links are not random & differ greatly in importance (à weighted connectance) and webs always more stable than expected by random
- Observed seasonal dynamics could only be reproduced by an ATN model when accounting for nutrient recycling, activity respiration and some kind of "prey defence/predator interference"
- Distinguish light and nutrient limitation also in small food web moduls à dynamics & coexistence

How do predator and prey mechanistically adjust to each other? Focus on an important link between two trophic levels

2

Field observations from Lake Constance:

Ongoing coexistence of predator (= ciliates) & prey (=small algae) at high biomasses (15-30 generations) during spring

Not reproducible with classical models "independent" of parameters etc.

Explanation (after digging deep in the data)

Community biomass = constant, but population biomasses highly variable

- à ongoing changes in community composition of both prey and predator
- à Mean trait values of prey & predator change systematically
- à Mutual feed back between trait values in predator and prey

Tirok & Gaedke AME 2007

Explanation

Community biomass = constant, but population biomasses highly variable

- à ongoing changes in community composition of both prey and predator
- à Mean trait values of prey & predator communities change systematically
- à Mutual feed back between trait values in predator and prey

Tirok & Gaedke AME 2007

Biomass-trait feedback with adaptive prey (defended and undefended species) and trade-off between growth and defense

Predator Prev

fraction defended

Biomass-trait feedback with adaptive prey (defended and undefended species) and trade-off between growth and defense

Predator Prey fraction defended

Model with potential for trait variation in predator and prey community à "food web rewiring" by shifts in species dominance

Trade-offs among traits

With potential for trait variation in predator and prey

Dynamics in community biomasses dampened, populations alternate & fluctuate strongly à fits with observations

With potential for trait variation in predator and prey

Mean trait values of predator & prey variable and influence each other

With potential for trait variation in predator and prey

Tirok & Gaedke AME 2007

(Almost) same model system but "dynamic trait approach" ≈ "gradient dynamics" ≈ "aggregate model", also used in quantitative genetics for frequency of alleles

(Almost) same model system but "dynamic trait approach" ≈ "gradient dynamics" ≈ "aggregate model", used in quantitative genetics for frequency of alleles

Without potential for trait variation

à typical quarter-period phase-lagged, pronounced predator prey cycles as in 1 x 1 model

Potential for trait variation only in prey community

Small(!) shift & ongoing changes in trait values of algal community, thus trait variation maintained (escapes observation?!)

à Typical predator-prey cycles, but strongly dampened !

Tirok Bauer et al. PLoS One 2011

Potential for trait variation only in predator community

No trait variation in prey leads to loss of trait variation in predator community (1 predator outcompetes all others)

à Typical predator-prey cycles as in 1 x 1 model

Tirok Bauer et al. PLoS One 2011

With potential for trait variation in predator & prey

Dampened cycles alternate with periods when prey and predator cycle antiphase, transitions depend on values of community traits

- à Potential for trait variation may have strong effects on dynamics
- **à** Fits with observations
- à Shape of trade-off curves important for maintenance of trait diversity

Tirok Bauer et al. PLoS One 2011

Biomass-trait feedback: Prey defense – predator offense with realistic, potentially multimodal trait distribution

Coutinho, Klauschies & Gaedke (2016) Theoret. Ecol.

41

Further conclusions

- Observed plankton dynamics could be reproduced by models if and only if mutual adjustments in trait values between predators and prey were possible
- Much better fit at the cost of higher model complexity, counteracted by assuming simple trade-offs among 2 traits
- > Three different model approaches established

Biomass-trait feedbacks in various predator-prey systems

Adaptability

- Ü Enhances species coexistence (intra- & interspecific trait changes) à supersaturated systems
- ü May lead to antiphase predator-prey cycles, depending on the speed and costs of defense and offense
- ü May lead to reversed predator-prey cycles, depending on the amplitude of prey oscillations
- ü Phenotypic defense may destabilize predator-prey dynamics
- ü Type of inducible defense influences predator-prey dynamics (review)

Klauschies, Vasseur & Gaedke 2016 Ecol. Evol. Van Velzen & Gaedke 2017 Scientific Reports Van Velzen & Gaedke 2018 Ecol. Evol. Van Velzen et al. 2018 Oikos Yamamichi, Klauschies, Minor, v Velzen (2019) Ecol. Lett.

Biomass-trait feedbacks in (partly) adaptive tri-trophic food web models

 Introducing increasing levels of trait adaptability (Δ) into a tri-trophic chain: defense of prey & counter-defense of consumers (uni-directional trait axes)

2 Trade-offs:

- Defense vs. max. growth rate
- Counter-defense vs. half saturation constant

Ceulemans et al. 2019, Scientific Reports

Biomass-trait feedbacks in (partly) adaptive tri-trophic food web models

- > Trait adaptation at 0, 1, 2 or 3 trophic levels
- > bi-directional trait axes

Ceulemans et al., in prep.

Biomass-trait feedbacks in (partly) adaptive tri-trophic food web models

The impact of trait adaptability depends on the food web structure, the location and the amount of trait variation. With exceptions, biomass-trait feedbacks:

Compensatory dynamics a temporal variability in TL biomasses

- biomass of intermediate TL _& of top predators a efficiency yield
- resource use efficiency 둼 production 📒
- Diversity at lower TL begets diversity at higher TL

Ceulemans et al. 2019, Scientific Reports Ceulemans et al., in prep.

Observed biomass and trait dynamics (1987-1996)

- P_2/P_T Share of less-edible algae **à** defense
- H₂/H_T Share of large zooplankton à generalist consumers/offense (=counter defense)

Expected biomass and trait dynamics in co-adapting predator-prey system

Observed biomass and trait dynamics (1987-1996)

Tri-trophic system with selective top predators à densitydependent mortality on herbivorous groups

Observed biomass and trait dynamics with 3 TL

Trophic cascading of traits changes:

- Ciliates lose dominance already before before welledible algae are exploited, replaced by crustaceans
- Algae respond to herbivore biomass & composition, i.e. synchronized with 3. TL

Model reproduces observed biomass and trait dynamics with 3 TL

DFG Priority Programme DynaTrait

"Flexibility matters: Interplay between trait diversity and ecological dynamics using aquatic communities as model systems"

> 20/13 projects across Germany 2014-2021:

Vacancy for a Ph.D. or Post-Doc position J !

- Ph.D. (3 years) or a Post-Doc position (2 years) available within DynaTrait
- focus on the newly emerging question how mutual trait adaptations influence the robustness of the system against perturbations
- > Spread the word (print-outs) please
- > Contact Ursula Gaedke (gaedke@uni-potsdam.de) a.s.a.p.

Final conclusions: How to improve the realism of food-web models

- 1. Account for non-random food-web structure and differences in interaction strength
- 2. Account for carbon and nutrient recycling
- Distinguish between basal and activity respiration à growth efficiency à food web structure & energetics
- Food webs rewire à allow parameter values to adjust to ambient conditions (e.g. growth & grazing rates, defence level, diet composition) as (mean) trait values may change rapidly

The data are available in "LakeBase" (https://fred.igb-berlin.de/Lakebase) or **contact me J**

Thank you for your attention & Thank you to:

www.Dynatrait.de