Trait dimensionality effects on model communities

Carlos A. Serván
Joint work with Z.Miller, J.A. Capitán, T.Bodnar and S. Allesina

Allesina Lab
The University of Chicago

Functional traits

Functional traits

Functional traits

Let s_{i} for $i=1, \ldots, n$ be the species at a local community.

Functional traits

Let s_{i} for $i=1, \ldots, n$ be the species at a local community.

$$
s_{i} \rightarrow t_{i}:=\left(\begin{array}{c}
t_{1}^{i} \\
\vdots \\
t_{k}^{i}
\end{array}\right) \in \mathcal{T}
$$

Functional traits

Let s_{i} for $i=1, \ldots, n$ be the species at a local community.

$$
s_{i} \rightarrow t_{i}:=\left(\begin{array}{c}
t_{1}^{i} \\
\vdots \\
t_{k}^{i}
\end{array}\right) \in \mathcal{T}
$$

$$
g: \mathcal{T} \rightarrow \mathbb{R}
$$

Functional traits

Let s_{i} for $i=1, \ldots, n$ be the species at a local community.

$$
s_{i} \rightarrow t_{i}:=\left(\begin{array}{c}
t_{1}^{i} \\
\vdots \\
t_{k}^{i}
\end{array}\right) \in \mathcal{T}
$$

$$
\begin{aligned}
& g: \mathcal{T} \rightarrow \mathbb{R} \\
& f: \mathcal{T} \times \mathcal{T} \rightarrow \mathbb{R}
\end{aligned}
$$

Functional traits

Let s_{i} for $i=1, \ldots, n$ be the species at a local community.

$$
\begin{aligned}
& s_{i} \rightarrow t_{i}:=\left(\begin{array}{c}
t_{1}^{i} \\
\vdots \\
t_{k}^{i}
\end{array}\right) \in \mathcal{T} \\
& g: \mathcal{T} \rightarrow \mathbb{R} \\
& f: \mathcal{T} \times \mathcal{T} \rightarrow \mathbb{R} \\
& f_{t}: \mathcal{T} \rightarrow \mathbb{R}, t^{\prime} \rightarrow f\left(t, t^{\prime}\right)
\end{aligned}
$$

Functional traits

Let s_{i} for $i=1, \ldots, n$ be the species at a local community.

$$
\begin{aligned}
& s_{i} \rightarrow t_{i}:=\left(\begin{array}{c}
t_{1}^{i} \\
\vdots \\
t_{k}^{i}
\end{array}\right) \in \mathcal{T} \\
& g: \mathcal{T} \rightarrow \mathbb{R} \\
& f: \mathcal{T} \times \mathcal{T} \rightarrow \mathbb{R} \\
& f_{t}: \mathcal{T} \rightarrow \mathbb{R}, t^{\prime} \rightarrow f\left(t, t^{\prime}\right)
\end{aligned}
$$

In our case $\mathcal{T}=\mathbb{R}^{k}$ and:

$$
\begin{aligned}
& g: \mathcal{T} \rightarrow \mathbb{R}, t \rightarrow 1 \\
& f: \mathcal{T} \times \mathcal{T} \rightarrow \mathbb{R},\left(t, t^{\prime}\right) \rightarrow\left\langle t, t^{\prime}\right\rangle
\end{aligned}
$$

Lotka-Volterra

For $x \in \mathbb{R}^{n}$:

$$
\frac{d x}{d t}=x \circ(r-A x)
$$

Lotka-Volterra

For $x \in \mathbb{R}^{n}$:

$$
\begin{aligned}
\frac{d x}{d t} & =x \circ(r-A x) \\
r & =1 \\
A_{i j} & =\frac{1}{k} f\left(t_{i}, t_{j}\right) \\
G & =\left[t_{j i}\right] \in \mathbb{R}^{k \times n} \\
A & =\frac{1}{k} G^{T} G
\end{aligned}
$$

Attractors

(Thm 15.3.1 Hofabuer and Sigmund 1998) Since A is symmetric and positive definite $(k \geq n)$ we have a unique globally stable fixed point parameterized by $S \subset N=\{1, \ldots, n\}$:

$$
\begin{aligned}
x_{i}>0, i \in S & \text { (Feasibility) } \\
x_{S}\left(A x_{S}+r\right)=0 & \text { (Equilibrium) } \\
\left(A x_{S}+r\right)_{i}<0, i \notin S & \text { (Non-invasibility) }
\end{aligned}
$$

Random zoo

- Jose A. Capitán (Universidad Politécnica de Madrid)
- Jacopo Grilli (ICTP)
- Kent E. Morrison (American Institute of Mathematics)
- Stefano Allesina (Chicago)

Random zoo

(Top Down approach)

- Take a pool of n species.
- Let dynamics elapse.
- $k \leq n$ species are coexisting.
- We want to determine $P(k \mid n)$.
- Study random ecosystems.

Random zoo

(Top Down approach)

- Take a pool of n species.
- Let dynamics elapse.
- $k \leq n$ species are coexisting.
- We want to determine $P(k \mid n)$.
- Study random ecosystems.
(For symmetric stable systems, equivalent to Bottom up approach)

Random Zoo

Computed the distribution of sizes of the survival community for the cases: $\left(A_{i j}\right)$ and r_{i} symmetric about 0 random variables

Random Zoo

Computed the distribution of sizes of the survival community for the cases: $\left(A_{i j}\right)$ and r_{i} symmetric about 0 random variables

Nonzero mean

$\left(A_{i j}\right)$ deterministic and constant off diagonal with r gaussian.

$$
n \boxed { x } 1 0 \longdiv { x } 2 0 \triangle 3 0
$$

Sample Covariance matrix

Necessary condition for non-degenerate equilibrium $k \geq n$.

$$
G_{i} \sim \mathcal{N}(0, \Sigma) \quad \text { (Gaussian distribution) }
$$

Sample Covariance matrix

Necessary condition for non-degenerate equilibrium $k \geq n$.

$$
\begin{aligned}
G_{i} & \sim \mathcal{N}(0, \Sigma) & & \text { (Gaussian distribution) } \\
A & \sim \mathcal{W}_{n}\left(\frac{1}{k} \Sigma, k\right) & & \text { (Wishart Distribution) }
\end{aligned}
$$

Observables

How does the community "look" as a function of the number of traits k ?

Observables

How does the community "look" as a function of the number of traits k ?

- Distribution of the number of survivals : $\mathbb{P}(|S| \mid k, n, \Sigma)$
- Mean number of survivals : $\wp(k, n, \Sigma)$.
- Total biomass at the attractors : $W(k, n, \Sigma)$.

Attractors

(Thm 15.3.1 Hofabuer and Sigmund 1998) Since A is symmetric and positive definite $(k \geq n)$ we have a unique globally stable fixed point parameterized by $S \subset N=\{1, \ldots, n\}$:

$$
\begin{aligned}
x_{i}>0, i \in S & \text { (Feasibility) } \\
x_{S}\left(A x_{S}+r\right)=0 & \text { (Equilibrium) } \\
\left(A x_{S}+r\right)_{i}<0, i \notin S & \text { (Non-invasibility) }
\end{aligned}
$$

Probability of feasibility

$$
\begin{array}{r}
A x=1 \\
x_{i}>0
\end{array}
$$

Probability of feasibility

$$
\begin{array}{r}
A x=1 \\
x_{i}>0
\end{array}
$$

Let $A \sim \mathcal{W}_{n}(\Sigma, k), 1_{n} \in \mathbb{R}^{n}$ a vector of ones and $L_{n-1}=\left(I_{n-1} 0\right)$, then (Proof of Thm 1. Bodnar and Okhrin 2011)

Probability of feasibility

$$
\begin{array}{r}
A x=1 \\
x_{i}>0
\end{array}
$$

Let $A \sim \mathcal{W}_{n}(\Sigma, k), 1_{n} \in \mathbb{R}^{n}$ a vector of ones and $L_{n-1}=\left(I_{n-1} 0\right)$, then (Proof of Thm 1. Bodnar and Okhrin 2011)

$$
\tilde{x}=\frac{L_{n-1} A^{-1} 1_{n}}{1_{n}^{T} A^{-1} 1_{n}}
$$

Probability of feasibility

$$
\begin{array}{r}
A x=1 \\
x_{i}>0
\end{array}
$$

Let $A \sim \mathcal{W}_{n}(\Sigma, k), 1_{n} \in \mathbb{R}^{n}$ a vector of ones and $L_{n-1}=\left(I_{n-1} 0\right)$, then (Proof of Thm 1. Bodnar and Okhrin 2011)

$$
\begin{aligned}
& \tilde{x}=\frac{L_{n-1} A^{-1} 1_{n}}{1_{n}^{T} A^{-1} 1_{n}} \\
& \tilde{x} \sim t_{n-1}\left(k-n+2 ; \frac{L_{n-1} \Sigma^{-1} 1_{n}}{1_{n}^{T} \Sigma^{-1} 1_{n}}, \frac{1}{(k-n+2) 1_{n}^{T} \Sigma^{-1} 1_{n}} L_{n-1} R_{1} L_{n-1}^{T}\right)
\end{aligned}
$$

Probability of feasibility

$$
\begin{array}{r}
A x=1 \\
x_{i}>0
\end{array}
$$

Let $A \sim \mathcal{W}_{n}(\Sigma, k), 1_{n} \in \mathbb{R}^{n}$ a vector of ones and $L_{n-1}=\left(I_{n-1} 0\right)$, then (Proof of Thm 1. Bodnar and Okhrin 2011)

$$
\begin{aligned}
\tilde{x} & =\frac{L_{n-1} A^{-1} 1_{n}}{1_{n}^{T} A^{-1} 1_{n}} \\
\tilde{x} & \sim t_{n-1}\left(k-n+2 ; \frac{L_{n-1} \Sigma^{-1} 1_{n}}{1_{n}^{T} \Sigma^{-1} 1_{n}}, \frac{1}{(k-n+2) 1_{n}^{T} \Sigma^{-1} 1_{n}} L_{n-1} R_{1} L_{n-1}^{T}\right) \\
R_{1} & =\Sigma^{-1}-\Sigma^{-1} 1_{n} 1_{n}^{T} \Sigma^{-1} / 1_{n}^{T} \Sigma^{-1} 1_{n}
\end{aligned}
$$

Probability of feasibility

$$
P_{f}(n)=\int_{\mathbb{R}^{n-1}} d \tilde{x}^{n-1} p(\tilde{x}) \Theta\left(1-1_{n-1}^{\top} \tilde{x}\right) \prod_{i} \Theta\left(\tilde{x}_{i}\right)
$$

Probability of feasibility

$$
\begin{gather*}
P_{f}(n)=\int_{\mathbb{R}^{n-1}} d \tilde{x}^{n-1} p(\tilde{x}) \Theta\left(1-1_{n-1}^{T} \tilde{x}\right) \prod_{i} \Theta\left(\tilde{x}_{i}\right) \\
P_{f}(n)=\int_{\mathbb{R}} \operatorname{dug}(u) \mathbb{P}\left(y_{u} \succ 0,1_{n-1}^{T} y_{u}<1\right) \tag{1}
\end{gather*}
$$

Where:

$$
\begin{align*}
u & \sim \chi_{k-n+2}^{2} \\
y_{u} & \sim \mathcal{N}\left(\frac{L_{n-1} \Sigma^{-1} 1_{n}}{1_{n}^{T} \Sigma^{-1} 1_{n}}, \frac{1}{u 1_{n}^{T} \Sigma^{-1} 1_{n}} L_{n-1} R_{1} L_{n-1}^{T}\right) \tag{2}
\end{align*}
$$

Probability of Non-Invasibility

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right), \quad \Sigma=\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)
$$

Probability of Non-Invasibility

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right), \quad \Sigma=\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)
$$

(Thm 3.2.10 Muirhead 1982):

$$
\begin{aligned}
A_{21} \mid A_{11} & \sim \mathcal{N}\left(\Sigma_{21} \Sigma_{11}^{-1} A_{11}, \Sigma_{22.1} \otimes A_{11}\right) \\
\Sigma_{22.1} & =\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}
\end{aligned}
$$

Probability of Non-Invasibility

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right), \quad \Sigma=\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)
$$

(Thm 3.2.10 Muirhead 1982):

$$
\begin{aligned}
A_{21} \mid A_{11} & \sim \mathcal{N}\left(\Sigma_{21} \Sigma_{11}^{-1} A_{11}, \Sigma_{22.1} \otimes A_{11}\right) \\
\Sigma_{22.1} & =\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}
\end{aligned}
$$

In particular:

$$
A_{21} A_{11}^{-1} 1 \mid A_{11} \sim \mathcal{N}\left(\Sigma_{21} \Sigma_{11}^{-1} 1,1^{\top} A_{11}^{-1} 1 \Sigma_{22.1}\right)
$$

Probability of Non-Invasibility

$$
\text { Let } z=1-A_{21} A_{11}^{-1} 1 \text {, and } W=1^{T} A^{-1} 1 .
$$

Probability of Non-Invasibility

$$
\begin{aligned}
& \text { Let } z=1-A_{21} A_{11}^{-1} 1 \text {, and } W=1^{\top} A^{-1} 1 . \\
& P_{n i}(m)=\mathbb{P}(z \prec 0) \text { : }
\end{aligned}
$$

Probability of Non-Invasibility

$$
\begin{aligned}
& \text { Let } z=1-A_{21} A_{11}^{-1} 1 \text {, and } W=1^{T} A^{-1} 1 . \\
& P_{n i}(m)=\mathbb{P}(z \prec 0) \text { : } \\
& \qquad P_{n i}(m)=\int_{\mathbb{R}_{+}} d w g(w) O^{-}\left(n-m, 1-\Sigma_{21} \Sigma_{11}^{-1} 1, w \Sigma_{22.1}\right)
\end{aligned}
$$

Probability of Non-Invasibility

Theorem 3.2.11 Muirhead 1982 implies that:

$$
\frac{1^{T} \Sigma_{11}^{-1} 1}{W} \sim \chi_{k-m+1}^{2}
$$

Probability of Non-Invasibility

Theorem 3.2.11 Muirhead 1982 implies that:

$$
\begin{gather*}
\frac{1^{T} \Sigma_{11}^{-1} 1}{W} \sim \chi_{k-m+1}^{2} \\
P_{n i}(m)=\int_{\mathbb{R}_{+}} d w f(w) O^{-}\left(n-m, 1-\Sigma_{21} \Sigma_{11}^{-1} 1, \frac{1^{T} \Sigma_{11}^{-1} 1}{w} \Sigma_{22.1}\right) \tag{3}
\end{gather*}
$$

For f the density function of χ_{k-m+1}^{2}.

Constant Correlation $\rho \geq 0$ - Feasibility

$$
\Sigma=(1-\rho) I+\rho 11^{T}
$$

Constant Correlation $\rho \geq 0$ - Feasibility

$$
\begin{gather*}
\Sigma=(1-\rho) I+\rho 11^{T} \\
P_{f}(n)=\int_{\mathbb{R}_{+}} d u g(u) \frac{-i \sqrt{n \alpha_{u}}}{\sqrt{2 \pi}} \int_{\Gamma} d \zeta e^{\frac{n \zeta^{2} \alpha_{u}}{2}} \Phi\left(\frac{1 / n+\zeta \alpha_{u}}{\sqrt{\alpha_{u}}}\right)^{n} \tag{4}\\
\alpha_{u}:=\frac{1+(n-1) \rho}{u n(1-\rho)} \\
\beta_{u}:=\frac{\alpha_{u}}{n}
\end{gather*}
$$

Constant Correlation $\rho \geq 0$ - Feasibility

Constant Correlation $\rho \geq 0$ - Invasibility

$$
\begin{align*}
P_{n i}(m, n)=\int_{\mathbb{R}^{+}} d w f(w) & \int_{\mathbb{R}} d y \phi(y) \Phi\left(\frac{-1 / m+y \sqrt{\beta_{w}}}{\sqrt{\alpha_{w}}}\right)^{n-m} \tag{5}\\
\alpha_{w} & =\frac{1+(m-1) \rho}{m w(1-\rho)} \\
\beta_{w} & =\frac{\rho \alpha_{w}}{1+(m-1) \rho}
\end{align*}
$$

Distribution of survivors

$$
\begin{equation*}
\mathbb{P}(|S|=m \mid n, k, \rho)=\binom{n}{m} P_{f, n_{i}}(m)=\binom{n}{m} P_{f}(m) P_{n i}(m)=P_{a}(m) \tag{6}
\end{equation*}
$$

Distribution of survivors

$$
\begin{equation*}
\mathbb{P}(|S|=m \mid n, k, \rho)=\binom{n}{m} P_{f, n_{i}}(m)=\binom{n}{m} P_{f}(m) P_{n i}(m)=P_{a}(m) \tag{6}
\end{equation*}
$$

Approximations for \wp

$$
\lambda_{q}=1+\frac{n q \rho}{1-\rho}
$$

Approximations for \wp

$$
\begin{align*}
& \lambda_{q}=1+\frac{n q \rho}{1-\rho} \\
& \qquad \frac{\gamma-q^{*}}{q^{*}}-\left(\frac{\phi(\hat{q})}{q^{*}}+\hat{q}\right)\left(\left(\lambda_{q}-1\right) \frac{\phi(\hat{q})}{q^{*}}+\lambda_{q} q^{*}\right)=0 \tag{7}
\end{align*}
$$

Approximations for \wp

$$
\begin{align*}
& \lambda_{q}=1+\frac{n q \rho}{1-\rho} \\
& \qquad \frac{\gamma-q^{*}}{q^{*}}-\left(\frac{\phi(\hat{q})}{q^{*}}+\hat{q}\right)\left(\left(\lambda_{q}-1\right) \frac{\phi(\hat{q})}{q^{*}}+\lambda_{q} q^{*}\right)=0 \tag{7}
\end{align*}
$$

Signature of Trait space dimension

Phylogenetic correlations

Let T be a rooted phylogenetic tree, with total time 1 .

$$
\begin{equation*}
\Sigma_{T}(i, j)=1-d(i, j) \tag{8}
\end{equation*}
$$

Phylogenetic correlations

Let T be a rooted phylogenetic tree, with total time 1 .

$$
\begin{equation*}
\Sigma_{T}(i, j)=1-d(i, j) \tag{8}
\end{equation*}
$$

In the limit of $\gamma \rightarrow \infty$, then $\frac{1}{k} A \rightarrow \Sigma_{T}$.

Properties of Phylogenetic covariances

- Any subset of species coexist (recursive proof)

Properties of Phylogenetic covariances

- Any subset of species coexist (recursive proof)
- The assembly graph is complete

Properties of Phylogenetic covariances

- Any subset of species coexist (recursive proof)
- The assembly graph is complete

What happens in the case of γ finite?

Species sorting

(Weber and Agrawal 2014)

Perfectly unbalanced tree

Summary

- $k=n$ is necessary for a non-degenerate equilibrium, but almost never gives full coexistenace.

Summary

- $k=n$ is necessary for a non-degenerate equilibrium, but almost never gives full coexistenace.
- We can detect a signature of the dimension of the trait space (under independent trait values).

Summary

- $k=n$ is necessary for a non-degenerate equilibrium, but almost never gives full coexistenace.
- We can detect a signature of the dimension of the trait space (under independent trait values).
- Our framework reproduces species sorting under phylogenetic correlation.

Acknowledgements

- Stefano Allesina
- Collaborators: José Capitán, Jacopo Grilli, Kent Morrison, Taras Bodnar, Zachary Miller.
- Angelo Monteiro, Dan Maynard and Matteo Sireci.

Thank you!

