How random are these grasses?

Matthieu Barbier*
(with G Bunin, JF Arnoldi, C de Mazancourt, M Loreau)

December 4, 2019
(* Centre for Biodiversity Theory and Modelling, CNRS, France)

A Few steps beyond Random

Main claim: Many cases of both ecological and mathematical interest have very, but not completely, random(-like) interactions.
What are the interesting first steps beyond fully-random matrices?

Plan:

(1) Minimal structure allowing coexistence
(2) Dynamically-relevant extra structure (if time allows)

Part 1: Minimal structure

In region 2, LV dynamics go to globally stable equilibrium, but only $S^{*}<S$ species survive in it.

Feasible submatrix α^{*} elements are not i.i.d. but they have the minimal deviation from randomness that ensures feasibility

Subplan:

- Explain the correlation structure
- Show it in data from grassland experiments
- Our notations for competitive Lotka-Volterra ($\alpha>0=$ negative interaction)

$$
\begin{equation*}
\frac{d N_{i}}{d t}=\frac{r_{i}}{K_{i}} N_{i}\left(K_{i}-N_{i}-\sum_{j \neq i}^{s} \alpha_{i j} N_{j}\right) \tag{1}
\end{equation*}
$$

- Equilibrium condition for the S^{*} survivors

$$
\begin{equation*}
N_{i}=K_{i}-\sum_{j \neq i}^{S^{*}} \alpha_{i j}^{*} N_{j} \tag{2}
\end{equation*}
$$

- For empirical reasons (explained later), we rather use rescaled abundances $\eta_{i}=N_{i} / K_{i}$

$$
\begin{equation*}
\eta_{i}=1-\sum_{j \neq i}^{S^{*}} \beta_{i j}^{*} \eta_{j} \tag{3}
\end{equation*}
$$

$\mathrm{NB}: \beta_{i j}^{*}=\alpha_{i j}^{*} K_{j} / K_{i}$

Correlations

Bunin (PRE 2017) showed that $\beta_{i j}^{*}$ are not i.i.d.
Species die = rows and columns disappear, creating biases and correlations (shown later).

$\operatorname{corr}\left(\beta_{i j}, \beta_{i k}\right)$	$\operatorname{corr}\left(\beta_{i j}, \beta_{k j}\right)$	$\operatorname{corr}\left(\beta_{i j}, \beta_{k l}\right)$
Correlations within rows	Correlations within columns	Correlations between columns

Correlations

Bunin (PRE 2017) showed that $\beta_{i j}^{*}$ are not i.i.d.
Species die = rows and columns disappear, creating biases and correlations (shown later).

Surprisingly, same result from simple probabilistic argument: rather than run dynamics, directly draw $\beta_{i j}$ from Gaussian with mean $\bar{\beta}$ subject to the S linear constraints

$$
\begin{equation*}
0=1-\eta_{i}-\sum_{j \neq i}^{S} \beta_{i j} \eta_{j} \tag{4}
\end{equation*}
$$

Correlations

Simple calculation (Lagrange multipliers or rotation) gives:

$$
\begin{gather*}
E\left[\beta_{i j} \mid \eta_{i}, \eta_{j}\right]=\bar{\beta}+(1-\bar{\beta}) \Delta\left(\eta_{i}, \eta_{j}\right) \tag{5}\\
\operatorname{corr}\left(\beta_{i j}, \beta_{i k} \mid \eta_{i}, \eta_{j}, \eta_{k}\right)=-\frac{\eta_{j} \eta_{k}}{\sum_{m \neq i} \eta_{m}^{2}} \tag{6}
\end{gather*}
$$

where mean interactions are biased to achieve the correct η_{i} :

$$
\begin{equation*}
\Delta\left(\eta_{i}, \eta_{j}\right)=-\frac{\left(\eta_{i}-\eta^{*}\right) \eta_{j}}{\sum_{m \neq i} \eta_{m}^{2}} \tag{7}
\end{equation*}
$$

and η^{*} is baseline abundance obtained if all $\beta_{i j}=\bar{\beta}$

$$
\begin{equation*}
\eta^{*}=\frac{1-\bar{\beta} \sum_{i} \eta_{i}}{1-\bar{\beta}} \tag{8}
\end{equation*}
$$

Correlations

Two statistical patterns among coexisting species

$$
\text { (a) Competitive bias } \Delta\left(\eta_{i}, \eta_{j}\right) \sim-\left(\eta_{i}-\eta^{*}\right) \eta_{j}
$$

Targeted by successful spp.

Avoided by successful spp.

$$
\text { (b) Overlap avoidance } \quad \operatorname{corr}\left(\beta_{i j}, \beta_{i k}\right) \sim-\eta_{j} \eta_{k}
$$

Two successful species do not target the same species.

How does it work?

	Prior distribution	Bias on means	Correlation/covariance	Transformed distribution
Simple example		$\begin{aligned} & \operatorname{mean}\left(b_{1}\right)=0 \\ & \operatorname{mean}\left(b_{2}\right)=1 \end{aligned}$	$\begin{aligned} & \operatorname{corr}\left(b_{1}, b_{2}\right)=-1 \\ & \operatorname{Cov}_{\mathrm{ij}}=\left(\begin{array}{rr} 1 & -1 \\ -1 & 1 \end{array}\right) \end{aligned}$	b_{2}
Clique pattern		$\operatorname{mean}\left(\beta_{i j}\right) \sim-A \theta_{i} \theta_{j}$		$\sum_{j} \beta_{i j} \theta_{j}-1=0$ Networks with equilibrium $\eta(\theta)$ All interaction networks $\beta_{i j}$

Interpretation

Many interaction matrices $\beta_{i j}$ admit the same equilibrium η_{i} ($O\left(S^{2}\right)$ parameters for only S constraints)

Most (from random prior) will exhibit our predicted correlations, i.e. minimal deviation from randomness allowing these η_{i}

FINDING IT IN DATA

Each plot $=$ some combination of $1,2 \ldots$ species from a pool of S species

What data?

Data $=$ time series $N_{i}(t)$ in various combinations of species

Trajectories S=1

(here Wageningen grassland experiment, $S=8,11$ years, 4 replicates)

Inferring interactions

- Somehow estimate equilibrium abundance N_{i}
- Multilinear fit of interactions α :
each species combination $k=$ point on hyperplane defined by

$$
\begin{equation*}
N_{i}^{(k)}=K_{i}-\sum_{j \in k} \alpha_{i j} N_{j}^{(k)} \tag{9}
\end{equation*}
$$

- Problem: K_{i} are widely distributed (and α too)

Inferring interactions

- Solution: take $\eta_{i}=N_{i} / K_{i}$ and fit

$$
\begin{equation*}
\eta_{i}=1-\sum_{j \neq i} \beta_{i j} \eta_{j} \tag{10}
\end{equation*}
$$

- Sanity checks: Wageningen really looks like LV equilibrium

Once we have individual interactions $\beta_{i j}$, see if they show the expected trends

(NB: theoretical predictions controlled only by η_{i} in the full $S=8$ composition; shaded area $=$ variation of prediction due to error on η_{i})

Every way we slice and dice the data, it matches theory

Rightmost panel: shaded area: +- 1 SD of predictions, dashes: $95 \% \mathrm{CI}$ of predictions

Transition

- Within a group of sufficiently similar grasses, good empirical evidence of minimal deviation from randomness (just enough to allow coexistence)
- What about larger ecological networks, how random are they?

Part 2: Extra structure

- Random matrix: all species are statistically equivalent, hence we care only about scaled mean μ, SD σ and symmetry γ of interactions.
- Reality: not all statistically equivalent, but there are structures e.g. functional groups

C ESV-level composition

d Family-level composition

relative abundance

(Goldford et al)

- Not all extra structure is dynamically relevant
- In ecological models, large macrostructures are main causes of departure from mean-field (random prediction)

x -axis $=$ degree of order (structure-specific control parameter)
y-axis $=$ difference between abundance distribution for random versus structured interactions
(Barbier, Arnoldi, Bunin and Loreau, PNAS 2018)

Simple extra structure can be captured by a not-completely-random approximation, e.g. matrix of per-group interaction mean $\mu_{x y}$ and $\mathrm{SD} \sigma_{x y}$

Stochastic Block Models identify the correct structure in the interaction network

(in fact they are a bit overzealous: they identify it before it starts to matter in susceptibility $V_{i j}$, which is more self-averaging)

Directions of deviation from Randomness?

Different ways of adding order with more parameters: groups (matrix $\mu_{x y}$), Taylor expansion (function $\mu(x, y)$)...

Technical point of view: low rank structures, perturbed random matrix theory

Conclusions

- Random matrices are not a bad starting point for real systems: empirical evidence of minimal deviation from randomness
- However it is worth looking a bit beyond randomness, into simple order+disorder combinations
"There is a fundamental dichotomy between structure and randomness, which in turn leads to a decomposition of any object into a structured (lowcomplexity) component and a random (discorrelated) component."

Terence Tao, The dichotomy between structure and randomness, arithmetic progressions, and the primes. 2006 ICM proceedings.

