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A few steps beyond random

Main claim: Many cases of both ecological and mathematical interest
have very, but not completely, random(-like) interactions.

What are the interesting first steps beyond fully-random matrices?

Plan:

1 Minimal structure allowing coexistence
2 Dynamically-relevant extra structure (if time allows)
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Part 1: Minimal structure
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2. Convex phase
Global equilibrium (Bunin 2016)

3. Critical phase
Many marginal eqs.

(Biroli 2018) or chaos

3. Critical

2. Convex

µ

4.Multi

4. Multistable phase
invasion-driven jumps

(Arnoldi 2019),

directionality (Bunin 2019)

Phase diagram

No solution

1. Feasible
1. Fully feasible phase
Random coexistence (Rohr 2014)

S

In region 2, LV dynamics go to globally stable equilibrium, but only S

⇤ < S

species survive in it.

Feasible submatrix ↵⇤ elements are not i.i.d. but they have the minimal

deviation from randomness that ensures feasibility
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Subplan:

Explain the correlation structure

Show it in data from grassland experiments
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Our notations for competitive Lotka-Volterra (↵ > 0 = negative interaction)

dNi

dt

=
ri

Ki
Ni

0

@
Ki � Ni �

SX

j 6=i

↵ijNj

1

A (1)

Equilibrium condition for the S

⇤ survivors

Ni = Ki �
S⇤X

j 6=i

↵⇤
ijNj (2)

For empirical reasons (explained later), we rather use rescaled abundances
⌘i = Ni/Ki

⌘i = 1�
S⇤X

j 6=i

�⇤
ij⌘j (3)

NB: �⇤
ij = ↵⇤

ijKj/Ki
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Correlations

Bunin (PRE 2017) showed that �⇤
ij are not i.i.d.

Species die = rows and columns disappear, creating biases and correlations
(shown later).

Correlations
within columns

Correlations
within rows

Correlations
between columns

Surprisingly, same result from simple probabilistic argument:
rather than run dynamics, directly draw �ij from Gaussian with mean �̄ subject to
the S linear constraints

0 = 1� ⌘i �
SX

j 6=i

�ij⌘j (4)
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Correlations

Simple calculation (Lagrange multipliers or rotation) gives:

E [�ij |⌘i , ⌘j ] = �̄ + (1� �̄)�(⌘i , ⌘j) (5)

corr(�ij ,�ik |⌘i , ⌘j , ⌘k) = � ⌘j⌘kP
m 6=i ⌘

2

m

. (6)

where mean interactions are biased to achieve the correct ⌘i :

�(⌘i , ⌘j) = � (⌘i � ⌘⇤)⌘jP
m 6=i ⌘

2

m

. (7)

and ⌘⇤ is baseline abundance obtained if all �ij = �̄

⌘⇤ =
1� �̄

P
i ⌘i

1� �̄
. (8)
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Correlations

(b) Overlap avoidance

Less biased

Two successful species do not
target the same species.

Two statistical patterns among coexisting species

(a) Competitive bias

+

-

Avoided by
successful spp.

Targeted by
successful spp.

More biased
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How does it work?
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Interpretation

Many interaction matrices �ij admit the same equilibrium ⌘i
(O(S2

) parameters for only S constraints)

Most (from random prior) will exhibit our predicted correlations,
i.e. minimal deviation from randomness allowing these ⌘i
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Finding it in data

Each plot = some combination of 1, 2... species from a pool of S species
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What data?

Data = time series Ni (t) in various combinations of species

(here Wageningen grassland experiment, S = 8, 11 years, 4 replicates)
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Inferring interactions

Somehow estimate equilibrium abundance Ni

Multilinear fit of interactions ↵:
each species combination k = point on hyperplane defined by

N

(k)
i = Ki �

X

j2k

↵ijN
(k)
j (9)

Problem: Ki are widely distributed (and ↵ too)
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Inferring interactions

Solution: take ⌘i = Ni/Ki and fit

⌘i = 1�
X

j 6=i

�ij⌘j (10)

Sanity checks: Wageningen really looks like LV equilibrium
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Once we have individual interactions �ij , see if they show the expected trends
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(NB: theoretical predictions controlled only by ⌘i in the full S = 8 composition;
shaded area = variation of prediction due to error on ⌘i )
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Every way we slice and dice the data, it matches theory

(a) Interaction coe cients

(b) Theoretical expectations

(d) Empirical average

1:1

(c) One-to-one comparison (e) Per-species comparison
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Rightmost panel: shaded area: +- 1 SD of predictions, dashes: 95% CI of predictions
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Transition

Within a group of su�ciently similar grasses, good empirical evidence
of minimal deviation from randomness
(just enough to allow coexistence)

What about larger ecological networks, how random are they?
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Part 2: Extra structure
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Random matrix: all species are statistically equivalent, hence we care only
about scaled mean µ, SD � and symmetry � of interactions.

Reality: not all statistically equivalent, but there are structures e.g.
functional groups

(Goldford et al)
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Not all extra structure is dynamically relevant

In ecological models, large macrostructures are main causes of
departure from mean-field (random prediction)

x-axis = degree of order (structure-specific control parameter)
y-axis = di↵erence between abundance distribution for random versus structured
interactions

(Barbier, Arnoldi, Bunin and Loreau, PNAS 2018)

Matthieu Barbier How random are these grasses? December 4, 2019 21 / 26



Simple extra structure can be captured by a not-completely-random
approximation, e.g. matrix of per-group interaction mean µxy and SD �xy

,
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Stochastic Block Models identify the correct structure in the interaction network

0.0 0.2 0.4 0.6 0.8 1.0
Order parameter

0.0

0.2

0.4

0.6

0.8

1.0

Bipartite graph
Partitioning
SBM
Dynamics

0 25 50 75 100

0

20

40

60

80

100

Aij

0 25 50 75 100

0

20

40

60

80

100

Aij

Probability of
correct group
identification

Deviation from
disordered
equilibrium

(in fact they are a bit overzealous: they identify it before it starts to matter in
susceptibility Vij , which is more self-averaging)
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Directions of deviation from randomness?

Di↵erent ways of adding order with more parameters: groups (matrix µxy ), Taylor
expansion (function µ(x , y))...
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Technical point of view: low rank structures, perturbed random matrix theory
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Conclusions

Random matrices are not a bad starting point for real systems:
empirical evidence of minimal deviation from randomness

However it is worth looking a bit beyond randomness, into simple
order+disorder combinations

”There is a fundamental dichotomy between structure and randomness, which

in turn leads to a decomposition of any object into a structured (low-

complexity) component and a random (discorrelated) component.”

Terence Tao, The dichotomy between structure and randomness, arithmetic progressions, and

the primes. 2006 ICM proceedings.
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