Invasion fitness, indirect feedbacks and alternative stable states in ecological community models

Jean-Francois Arnoldi, Matthieu Barbier, Gyuri Barabas, Andrew Jackson, Guy Bunin

Lotka-Volterra Models: when Random Matrix Theory meets theoretical Ecology, Paris, December 2019

Fitness and feedbacks

Ecological context

"Contemplate an entangled bank, clothed with many plants

with birds singing on the bushes, with various insects flitting about, and with worms crawling through the damp earth."

J-F Arnoldi

Fitness and feedbacks

Competitive exclusion

Growth of two paramecium species separately and in combination. Source: Gause, Georgyl Frantsevitch. 1934 The Struggle for Existence. Dover Publications, 1971 reprint of original text.

Competitive exclusion

Growth of two paramecium species separately and in combination. Source: Gause, Georgyl Frantsevitch. 1934 The Struggle for Existence. Dover Publications, 1971 reprint of original text.

Extinction cascades in mutualistic networks

Tylianakis science 2013

Competitive exclusion

Growth of two paramecium species separately and in combination. Source: Gause, Georgyl Frantsevitch. 1934 The Struggle for Existence. Dover Publications 1971 reprint of original text.

Extinction cascades in mutualistic networks

Tylianakis science 2013

• different interaction types yield qualitatively different behaviour

Competitive exclusion

Growth of two paramecium species separately and in combination. Source: Gause, Georgyl Frantsevitch. 1934 The Struggle for Existence. Dover Publications 1971 reprint of original text.

Extinction cascades in mutualistic networks

Tylianakis science 2013

- different interaction types yield qualitatively different behaviour
- Specific interaction motifs are important

yet natural communities form complex networks

Pocock et al, Science 2012.

• uncertain knowledge in values of interaction strength

Fitness and feedbacks

yet natural communities form complex networks

Pocock et al, Science 2012.

• uncertain knowledge in values of interaction strength

• How could there be any pattern emerging from this complexity?

J-F Arnoldi

Fitness and feedbacks

KARATE 4 / 21

A caricature of Darwin's entangled bank: random Lotka-Volterra system of ODEs

$$\frac{1}{N_i}\frac{dN_i}{dt} = \frac{r_i}{k_i}(k_i - N_i - \sum_{j \neq i}^{S} A_{ij}N_j); \ i = 1, ..., S$$

A caricature of Darwin's entangled bank: random Lotka-Volterra system of ODEs

$$\frac{1}{N_i}\frac{dN_i}{dt} = \frac{r_i}{k_i}(k_i - N_i - \sum_{j \neq i}^S A_{ij}N_j); \ i = 1, ..., S$$
$$\text{mean}A_{ij} = \frac{\mu}{S}; \text{var}A_{ij} = \frac{\sigma^2}{S}, \text{corr}(A_{ij}A_{ji}) = \gamma; \ \text{var}k_i = \zeta$$

A caricature of Darwin's entangled bank: random Lotka-Volterra system of ODEs

$$\frac{1}{N_i} \frac{dN_i}{dt} = \frac{r_i}{k_i} (k_i - N_i - \sum_{j \neq i}^{S} A_{ij} N_j); \ i = 1, ..., S$$

$$\operatorname{mean} A_{ij} = \frac{\mu}{S}; \operatorname{var} A_{ij} = \frac{\sigma^2}{S}, \operatorname{corr} (A_{ij} A_{ji}) = \gamma; \ \operatorname{var} k_i = \zeta$$

$$\overset{\textcircled{}}{\cong} \qquad \overset{\textcircled{}}{\cong} \qquad \overset{\textcircled{}}{\boxtimes} \qquad \overset{\overset{}}{\boxtimes} \qquad \overset$$

5/21

 \mathbf{S}^* survive and form an uninvadable community

At equilibrium

$$N^* = (N_i^*) = (\mathbb{I} + A^*)^{-1}k^*$$

$$J = -\mathrm{Diag}(\frac{r^*N^*}{k^*})(\mathbb{I} + A^*)$$

with A^* is the $S^* \times S^*$ interaction matrix restricted to surviving species

 \mathbf{S}^* survive and form an uninvadable community

At equilibrium $N^* = (N^*_i) = (\mathbb{I} + A^*)^{-1}k^*$

$$J = -\mathrm{Diag}(\frac{r^*N^*}{k^*})(\mathbb{I} + A^*)$$

with A^* is the $S^* \times S^*$ interaction matrix restricted to surviving species Sensitivity of abundances to abiotic conditions k_i is

$$V_{ij} = \frac{\partial N_i^*}{\partial k_j} = (\mathbb{I} + A^*)_{ij}^{-1}$$

 \mathbf{S}^* survive and form an uninvadable community

At equilibrium

$$N^* = (N_i^*) = (\mathbb{I} + A^*)^{-1}k^*$$

$$J = -\text{Diag}(\frac{r^*N^*}{k^*})(\mathbb{I} + A^*)$$

with A^* is the $S^* \times S^*$ interaction matrix restricted to surviving species Sensitivity of abundances to abiotic conditions k_i is

$$V_{ij} = \frac{\partial N_i^*}{\partial k_j} = (\mathbb{I} + A^*)_{ij}^{-1}$$

 \mathbf{S}^* survive and form an uninvadable community

Stability is determined by the spectrum of A^\ast which is not exactly random if $S^\ast < S$

Behaviour of random L-V: the emergent phase diagram

description in simulation: (Kessler and Shnerb, 2015)

interaction statistics: $\mu = S \operatorname{mean} A_{ij} \sigma = S \operatorname{Var} A_{ij}$

In the multistable phase: abrupt transitions of community compositions along an environmental gradient

J-F Arnoldi

Example of competitive L-V (Liautaud et al, Ecol Lett 2019)

Example of competitive L-V (Liautaud et al, Ecol Lett 2019)

Resident community equilibrium N_i^* . Species 0 invades from rarity if invasion fitness

$$\frac{1}{N_0} \frac{dN_0}{dt} |_{N^*} = W_0(N_0 = 0)$$

is positive.

Resident community equilibrium N_i^* . Species 0 invades from rarity if invasion fitness

$$\frac{1}{N_0} \frac{dN_0}{dt} |_{N^*} = W_0(N_0 = 0)$$

is positive. At first order, invasion ends when

$$W_0(N_0) = 0 \Leftrightarrow \underbrace{W_0(0)}_{\text{fitness } w_0} + \underbrace{\frac{dW_0}{dN_0}}_{\text{feedback} - 1/v_0} \times N_0 = 0$$

Thus when

 $N_0 = v_0 w_0$

Resident community equilibrium N_i^* . Species 0 invades from rarity if invasion fitness

$$\frac{1}{N_0} \frac{dN_0}{dt} |_{N^*} = W_0(N_0 = 0)$$

is positive. At first order, invasion ends when

$$W_0(N_0) = 0 \Leftrightarrow \underbrace{W_0(0)}_{\text{fitness } w_0} + \underbrace{\frac{dW_0}{dN_0}}_{\text{feedback} - 1/v_0} \times N_0 = 0$$

Thus when

$$N_0 = v_0 w_0$$

Unless extinctions occurred: either because w_0 is large or because v_0 is large (or both). If $v_0 \leq 0$: coexistence state is unstable, and we have an abrupt transition

Fitness and feedbacks

A tale of two species

A tale of two species

J-F Arnoldi

Fitness and feedbacks

Small increase in abundance of the invader

 $0 \rightarrow N_0$

is a perturbation $-A_{i0}N_0$ of resident species,

Small increase in abundance of the invader

 $0 \rightarrow N_0$

is a perturbation $-A_{i0}N_0$ of resident species, which feeds back as

$$w_0 \to w_0 - N_0 - \sum_{ij} A_{0i} \delta N_i$$

with

$$\delta N_i = -\sum_j V_{ij}(-A_{i0}N_0)$$

Small increase in abundance of the invader

 $0 \rightarrow N_0$

is a perturbation $-A_{i0}N_0$ of resident species, which feeds back as

$$w_0 \to w_0 - N_0 - \sum_{ij} A_{0i} \delta N_i$$

with

$$\delta N_i = -\sum_j V_{ij}(-A_{i0}N_0)$$

Feedback from the resident community

Small increase in abundance of the invader

 $0 \rightarrow N_0$

is a perturbation $-A_{i0}N_0$ of resident species, which feeds back as

$$w_0 \to w_0 - N_0 - \sum_{ij} A_{0i} \delta N_i$$

with

$$\delta N_i = -\sum_j V_{ij}(-A_{i0}N_0)$$

Feedback from the resident community

in the case of coexistence, the invasion ends when $W_0(N_0) = 0$ which gives

$$N_0 = v_0 w_0$$
 where $1/v_0 = 1 - \sum_{i,j} A_{0i} V_{ij} A_{j0}$

Fitness and feedbacks

 $w_0=0$ is a bifurcation point, $1/v_0=0$ is the boundary between continuous and discontinuous invasions.

 $w_0 = 0$ is a bifurcation point, $1/v_0 = 0$ is the boundary between continuous and discontinuous invasions. There is a (soft) boundary between coexistence and reversible turnover and between no invasions and alternative stable states:

 $w_0 = 0$ is a bifurcation point, $1/v_0 = 0$ is the boundary between continuous and discontinuous invasions. There is a (soft) boundary between coexistence and reversible turnover and between no invasions and alternative stable states:

for L-V the branches are straight lines, and $\langle v_0 \rangle \equiv v_0$

fitness and feedbacks are the two axis that determine the impacts of invasions

Arnoldi, Barbier et al, BioRxiv 2019

. I – H	' Arnc	alda
· · ·		

Fitness and feedbacks

Back to the phase diagram (Heuristics)

what happens to $1/v_0$ in large random L-V systems?

Back to the phase diagram (Heuristics)

what happens to $1/v_0$ in large random L-V systems? At finite μ , σ sensitivity matrix V has self-averaging elements (Bunin 2017):

Back to the phase diagram (Heuristics)

what happens to $1/v_0$ in large random L-V systems? At finite μ , σ sensitivity matrix V has self-averaging elements (Bunin 2017):

$$\operatorname{Var}(V_{ii}) \sim \sigma^2 / S^* V_{ij} \sim \sigma \sqrt{1/S^*}$$

Since invaders and resident are drawn from the same distribution,

$$1/v_0 = 1 - \sum_{i,j} A_{0i} V_{ij} A_{i0} \to 1 - \gamma \phi \sigma^2 \langle V_{ii} \rangle \text{ and } v_0 \equiv \langle V_{ii} \rangle$$

Since invaders and resident are drawn from the same distribution,

$$1/v_0 = 1 - \sum_{i,j} A_{0i} V_{ij} A_{i0} \to 1 - \gamma \phi \sigma^2 \langle V_{ii} \rangle \text{ and } v_0 \equiv \langle V_{ii} \rangle$$

Since invaders and resident are drawn from the same distribution,

$$1/v_0 = 1 - \sum_{i,j} A_{0i} V_{ij} A_{i0} \to 1 - \gamma \phi \sigma^2 \langle V_{ii} \rangle \text{ and } v_0 \equiv \langle V_{ii} \rangle$$

• No alternative stable states in this limit.

Since invaders and resident are drawn from the same distribution,

$$1/v_0 = 1 - \sum_{i,j} A_{0i} V_{ij} A_{i0} \to 1 - \gamma \phi \sigma^2 \langle V_{ii} \rangle$$
 and $v_0 \equiv \langle V_{ii} \rangle$

- No alternative stable states in this limit.
- Sensitivity matrix V can become unstable before v stops being self-averaging: transition to the critical phase (cf. Guy and Guilio's talks)

Generic alternative stable states require occurrence of strong pair-wise competition

High diversity phase where invasions cause abrupt transitions:

Generic alternative stable states require occurrence of strong pair-wise competition

High diversity phase where invasions cause abrupt transitions:

• σ cannot grow with S without leading to unrealistic divergences.

Generic alternative stable states require occurrence of strong pair-wise competition

High diversity phase where invasions cause abrupt transitions:

- σ cannot grow with S without leading to unrealistic divergences.
- only possibility is $\mu \sim S$ with $\mu = S$ and $\sigma = 0$ corresponding to the Hubbell point (neutral dynamics).

The behaviour of the multistable phase (Bunin 2019)

 $\mu \sim S$ leads to cliques of nonexcluding species (Fried et al, 2017)

The behaviour of the multistable phase (Bunin 2019)

 $\mu \sim S$ leads to cliques of nonexcluding species (Fried et al, 2017)

As Guy Bunin will show, the alternative states are ordered (maturity) so that transitions between them are directional

Conclusion

• Invasion analysis can be extended beyond classic invasibility analysis

- Invasion analysis can be extended beyond classic invasibility analysis
- Reveals the inherent relationship between stability and assembly

- Invasion analysis can be extended beyond classic invasibility analysis
- Reveals the inherent relationship between stability and assembly
- Alternative stable states occur when (indirect) interactions generate positive feedback loops

- Invasion analysis can be extended beyond classic invasibility analysis
- Reveals the inherent relationship between stability and assembly
- Alternative stable states occur when (indirect) interactions generate positive feedback loops
- Alternative stable states in random Lotka-Volterra systems require strong competitive pair-wise interactions. Different scaling with S than the usual one used in random matrix theory.

• How to properly determine the chaos/alternative-states phase transition? Here only heuritical argument presented. There could be many unforseen subtleties

- How to properly determine the chaos/alternative-states phase transition? Here only heuritical argument presented. There could be many unforseen subtleties
- can we understand the chaotic phase through the invasion dynamics (onset of positive feedbacks that require perturbations of all species to manifest, not just via the invader)

- How to properly determine the chaos/alternative-states phase transition? Here only heuritical argument presented. There could be many unforseen subtleties
- can we understand the chaotic phase through the invasion dynamics (onset of positive feedbacks that require perturbations of all species to manifest, not just via the invader)
- Alternative stable states require strong interactions (pair-wise competitive exclusion) to generically manifest. Is this the case in natural systems that present abrupt transitions?