Tutorial on Random Matrix Theory

Mylène Maïda
mylene.maida@univ-lille.fr
Université de Lille

Workshop KARATE - Marne-la-Vallée - december 2019

Quick reminder of the motivations

The paradigm of May (~ 1971)

General idea : for complex multispecies networks, detailed interactions are rarely available, random matrix models may be relevant.

More precisely, an ecological network is modelled as a system of ODEs of the form:

$$
\frac{d a_{i}(t)}{d t}=f_{i}\left(a_{1}, \ldots, a_{N}\right), 1 \leq i \leq N
$$

with a_{i} the abundance of species i.
Assume the existence of an equilibrium $\left(a_{1}^{*}, \ldots, a_{N}^{*}\right)$ and linearise near equilibrium. Namely, if we set $a_{i}(t)=a_{i}^{*}+x_{i}(t)$, the dynamics can be approximated at first order by the linear system:

$$
\frac{d}{d t} \mathbf{x}(t)=\mathcal{J}\left(\boldsymbol{a}^{*}\right) \cdot \mathbf{x}(t)
$$

with $\mathcal{J}\left(\boldsymbol{a}^{*}\right)_{k \ell}:=\frac{\partial f_{k}}{\partial x_{\ell}}\left(a_{1}^{*}, \ldots, a_{N}^{*}\right)$.
May's model : the entries of \mathcal{J} are i.i.d. random variables (except on the diagonal).

Lotka-Volterra models

The dynamics of interacting species may be described by the Lotka-Volterra equations:

$$
\frac{d a_{i}(t)}{d t}=a_{i}\left(r_{i}-\theta a_{i}+\sum_{j=1}^{N} \frac{Z_{i j}}{N^{\delta}} a_{j}\right)
$$

where

- r_{i} is the intrinsic growth rate of species i
- $\theta>0$ is a friction coefficient (intraspecific competition)
- $Z_{i j}$ stands for the interactions $j \rightarrow i$.

The equilibrium a^{*} is given by

$$
\boldsymbol{a}^{*}=\left(\theta I_{N}-\frac{Z}{N^{\delta}}\right)^{-1} \boldsymbol{r}
$$

The Jacobian $\mathcal{J}\left(\boldsymbol{a}^{*}\right)$, which is explicit

$$
\mathcal{J}\left(\boldsymbol{a}^{*}\right)=\operatorname{diag}\left(\boldsymbol{a}^{*}\right)\left(-\theta I_{N}+\frac{Z}{N^{\delta}}\right)
$$

It is a special case of density-dependent models, for which

$$
\mathcal{J}\left(\boldsymbol{a}^{*}\right)=\operatorname{diag}\left(\boldsymbol{a}^{*}\right) \cdot \boldsymbol{M},
$$

where \boldsymbol{M} may depend on $\operatorname{diag}\left(\boldsymbol{a}^{*}\right)$.

Large Random Matrices

Random matrices

It is a $N \times N$ matrix

$$
\mathbf{Y}_{N}=\left[\begin{array}{ccc}
Y_{11} & \cdots & Y_{1 N} \\
\vdots & & \vdots \\
Y_{N 1} & \cdots & Y_{N N}
\end{array}\right]
$$

whose entries $\left(Y_{i j} ; 1 \leq i, j \leq N\right)$ are random variables.

Matrix features

Of interest are the following quantities

- \mathbf{Y}_{N} 's spectrum ($\left.\lambda_{i}, 1 \leq i \leq N\right)$ and eigenvectors
- Extreme eigenvalues ($\lambda_{\min }$ and $\lambda_{\max }$ if spectrum is real, spectral radius, eigenvalue with maximal real part etc.)
- Linear statistics Trace $f\left(\mathbf{Y}_{N}\right)=\sum_{i=1}^{N} f\left(\lambda_{i}\right)$ and their fluctuations

Asymptotic regime

Often, the description of the previous features takes a simplified form as

$$
N \rightarrow \infty
$$

Wigner Matrices

Matrix model

Let $\mathbf{X}_{N}=\left(X_{i j}\right)$ a real symmetric (or Hermitian) $N \times N$ matrix with i.i.d. entries on and above the diagonal with

$$
\mathbb{E} X_{i j}=0 \text { and } \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and $X_{i j}=\overline{X_{j i}}$ (for symmetry).

- consider the spectrum of Wigner matrix $\mathbf{Y}_{N}=\frac{\mathbf{x}_{N}}{\sqrt{N}}$

Wigner Matrices

Wigner Matrix, $\mathrm{N}=10$

Matrix model

Let $\mathbf{X}_{N}=\left(X_{i j}\right)$ a real symmetric (or Hermitian) $N \times N$ matrix with i.i.d. entries on and above the diagonal with

$$
\mathbb{E} X_{i j}=0 \text { and } \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and $X_{i j}=\overline{X_{j i}}$ (for symmetry).

- consider the spectrum of Wigner matrix $\mathbf{Y}_{N}=\frac{\mathbf{x}_{N}}{\sqrt{N}}$

Figure: Histogram of the eigenvalues of \mathbf{Y}_{N}

Wigner Matrices

Wigner Matrix, $\mathbf{N}=\mathbf{5 0}$

Matrix model

Let $\mathbf{X}_{N}=\left(X_{i j}\right)$ a real symmetric (or Hermitian) $N \times N$ matrix with i.i.d. entries on and above the diagonal with

$$
\mathbb{E} X_{i j}=0 \text { and } \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and $X_{i j}=\overline{X_{j i}}$ (for symmetry).

- consider the spectrum of Wigner matrix $\mathbf{Y}_{N}=\frac{\mathbf{x}_{N}}{\sqrt{N}}$

Figure: Histogram of the eigenvalues of \mathbf{Y}_{N}

Wigner Matrices

Wigner Matrix, $\mathrm{N}=100$

Matrix model

Let $\mathbf{X}_{N}=\left(X_{i j}\right)$ a real symmetric (or Hermitian) $N \times N$ matrix with i.i.d. entries on and above the diagonal with

$$
\mathbb{E} X_{i j}=0 \text { and } \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and $X_{i j}=\overline{X_{j i}}$ (for symmetry).

- consider the spectrum of Wigner matrix $\mathbf{Y}_{N}=\frac{\mathbf{x}_{N}}{\sqrt{N}}$

Figure: Histogram of the eigenvalues of \mathbf{Y}_{N}

Wigner Matrices

Wigner Matrix, $\mathrm{N}=500$

Matrix model

Let $\mathbf{X}_{N}=\left(X_{i j}\right)$ a real symmetric (or Hermitian) $N \times N$ matrix with i.i.d. entries on and above the diagonal with

$$
\mathbb{E} X_{i j}=0 \text { and } \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and $X_{i j}=\overline{X_{j i}}$ (for symmetry).

- consider the spectrum of Wigner matrix $\mathbf{Y}_{N}=\frac{\mathbf{X}_{N}}{\sqrt{N}}$

Figure: Histogram of the eigenvalues of \mathbf{Y}_{N}

Wigner Matrices

Wigner Matrix, $\mathrm{N}=1500$

Matrix model

Let $\mathbf{X}_{N}=\left(X_{i j}\right)$ a real symmetric (or Hermitian) $N \times N$ matrix with i.i.d. entries on and above the diagonal with

[^0]

Figure: Histogram of the eigenvalues of \mathbf{Y}_{N}

Wigner Matrices

Wigner Matrix, $\mathrm{N}=1500$

Matrix model

Let $\mathbf{X}_{N}=\left(X_{i j}\right)$ a real symmetric (or Hermitian) $N \times N$ matrix with i.i.d. entries on and above the diagonal with

$$
\mathbb{E} X_{i j}=0 \text { and } \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and $X_{i j}=\overline{X_{j i}}$ (for symmetry).

- consider the spectrum of Wigner matrix $\mathbf{Y}_{N}=\frac{\mathbf{X}_{N}}{\sqrt{N}}$

Figure: The semi-circular distribution (in red) with density $x \mapsto \frac{\sqrt{4-x^{2}}}{2 \pi}$

Wigner's theorem (1948)
"The histogram of a Wigner matrix converges to the semi-circular distribution"

About normalisation

Wigner's theorem can be written as follows :

$$
\frac{1}{N} \sum_{i=1}^{N} f\left(\lambda_{i}\left(\mathbf{Y}_{N}\right)\right) \xrightarrow[N \rightarrow \infty]{a . s .} \int_{-2}^{2} f(x) \frac{\sqrt{4-x^{2}}}{2 \pi} \mathrm{~d} x=\int f(x) \mathrm{d} \sigma(x)
$$

A quick computation

$$
\begin{aligned}
\frac{1}{N} \sum_{i=1}^{N} \lambda_{i}\left(\mathbf{Y}_{N}\right)^{2} & =\frac{1}{N} \operatorname{Trace}\left(\mathbf{Y}_{N}\right)^{2}=\frac{1}{N^{2}} \operatorname{Trace}\left(\mathbf{X}_{N}\right)^{2} \\
& =\frac{1}{N^{2}} \sum_{i, j=1}^{N} X_{i j} X_{j i}=\frac{1}{N^{2}} \sum_{i, j=1}^{N}\left|X_{i j}\right|^{2}
\end{aligned}
$$

so that

$$
\mathbb{E}\left(\frac{1}{N} \sum_{i=1}^{N} \lambda_{i}\left(\mathbf{Y}_{N}\right)^{2}\right)=1
$$

In the Lotka-Volterra model, this normalisation corresponds to $\delta=1 / 2$.

Fluctuations of linear statistics

Many results starting with Johansson (1999) lead to the following results: if the entries have enough finite moments,

- for smooth test functions f,

$$
N\left(\frac{1}{N} \sum_{i=1}^{N} f\left(\lambda_{i}\left(\mathbf{Y}_{N}\right)\right)-\int f(x) \mathrm{d} \sigma(x)\right)
$$

converges to a Gaussian variable, with mean and variance depending on f.

- for $f(x)=\mathbf{1}_{[y, \infty)}(x)$, we let $\left.N_{y}\left(\mathbf{Y}_{N}\right):=\sharp\left\{i ; \lambda_{i}\left(\mathbf{Y}_{N}\right)\right) \geq y\right\}$. If the first fourth moment match with a normal variable, $\operatorname{Var}\left(N_{y}\left(\mathbf{Y}_{N}\right)\right)=\left(\frac{1}{2 \pi^{2}}+o(1)\right) \log N$, and

$$
\frac{N_{y}\left(\mathbf{Y}_{N}\right)-N \sigma([y, \infty))}{\sqrt{\operatorname{Var}\left(N_{y}\left(\mathbf{Y}_{N}\right)\right)}}
$$

converges to a normal random variable.

Local spectrum behavior for Wigner matrices

Let

$$
\lambda_{\max }=\lambda_{\max }\left(\mathbf{Y}_{N}\right) \quad \text { and } \quad \lambda_{\min }=\lambda_{\min }\left(\mathbf{Y}_{N}\right)
$$

Theorem (convergence of extremal eigenvalues)
If $\mathbb{E}\left|X_{i j}\right|^{4}<\infty$, then

$$
\lambda_{\max } \xrightarrow[N \rightarrow \infty]{\text { a.s. }} 2 \quad \text { and } \quad \lambda_{\min } \xrightarrow[N \rightarrow \infty]{\text { a.s. }}-2
$$

Theorem (fluctuations of $\lambda_{\text {max }}$ and Tracy-Widom distribution)
If $\lim _{s \rightarrow \infty} s^{4} \mathbb{P}\left(\left|X_{12}\right| \geq s\right)=0$, we have

$$
N^{2 / 3}\left\{\lambda_{\max }\left(\mathbf{Y}_{N}\right)-2\right\} \xrightarrow[N \rightarrow \infty]{\mathcal{L}} \mathbb{P}_{\text {TW }}
$$

Remark

- Notice the strange normalization $N^{2 / 3}$
- This stems from the \sqrt{x}-shape of the density at the edge (see later)

Details on Tracy-Widom distribution

Tracy-Widom distribution is defined by

- its cumulative distribution function

$$
F_{T W}(x)=\exp \left\{-\int_{x}^{\infty}(u-x)^{2} q^{2}(u) d u\right\}
$$

- where

$$
q^{\prime \prime}(x)=x q(x)+2 q^{3}(x) \quad \text { and } \quad q(x) \sim \mathrm{Ai}(x) \text { as } x \rightarrow \infty .
$$

$x \mapsto \operatorname{Ai}(x)$ being the Airy function.

Don't bother .. just download it

- For simulations, cf. R Package 'RMTstat', by Johnstone et al.
- Also, Folkmar Bornemann (TU München) has developed fast matlab code

Tracy-Widom curve

Figure: Tracy-Widom density

A heuristic on the normalization $N^{2 / 3}$

- By Wigner's theorem, $\frac{\#\left\{\lambda_{i}>2-\varepsilon\right\}}{N} \longrightarrow \int_{2-\varepsilon}^{2} \frac{\sqrt{4-x^{2}}}{2 \pi} \mathrm{~d} x$
- Hence "for small ε ",

$$
\begin{aligned}
\#\left\{\lambda_{i}>2-\varepsilon\right\} & \approx N \int_{2-\varepsilon}^{2} \frac{\sqrt{4-x^{2}}}{2 \pi} \mathrm{~d} x \\
& \approx N \frac{4}{2 \pi} \int_{2-\varepsilon}^{2} \sqrt{2-x} d x=c N \varepsilon^{3 / 2}
\end{aligned}
$$

- To have finitely many values in $(2-\varepsilon, \infty)$, we want $\#\left\{\lambda_{i}>2-\varepsilon\right\}=\mathcal{O}(1)$
- We choose $\varepsilon=c N^{-2 / 3}$ so that $N \varepsilon^{3 / 2}=\mathcal{O}(1)$ and

$$
\#\left\{\lambda_{i}>2-c N^{-2 / 3}\right\}=\#\left\{N^{2 / 3}\left(\lambda_{i}-2\right)>c\right\}=\mathcal{O}(1)
$$

- This suggests to study the fluctuations of

$$
N^{2 / 3}\left(\lambda_{\max }-2\right)
$$

- The $N^{2 / 3}$ normalization is strongly associated to the \sqrt{x}-behaviour of the density at the corresponding edge

Marčenko-Pastur's theorem

Theorem

- Consider a $N \times n$ matrix \mathbf{X}_{N} with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \quad \mathbb{E}\left|X_{i j}\right|^{2}=\sigma^{2}
$$

with N and n of the same order and L_{N} the spectral measure of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}$:

$$
c_{n} \triangleq \frac{N}{n} \xrightarrow[n \rightarrow \infty]{ } c \in(0, \infty), \quad L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}\left(n^{-1} \mathbf{x}_{N} \mathbf{x}_{N}^{*}\right)}
$$

- Then almost surely (= for almost every realization)

$$
L_{N} \xrightarrow[N, n \rightarrow \infty]{ } \mathbb{P}_{\check{\mathrm{M}} \mathrm{P}} \quad \text { in distribution }
$$

where $\mathbb{P}_{\text {M }}$ is Marčenko-Pastur distribution:

$$
\mathbb{P}_{\mathrm{M} \mathrm{P}}(d x)=\left(1-\frac{1}{c}\right)_{+} \delta_{0}(d x)+\frac{\sqrt{\left[\left(\lambda^{+}-x\right)\left(x-\lambda^{-}\right)\right]_{+}}}{2 \pi \sigma^{2} x c} d x
$$

$$
\text { with }\left\{\begin{array}{l}
\lambda^{-}=\sigma^{2}(1-\sqrt{c})^{2} \\
\lambda^{+}=\sigma^{2}(1+\sqrt{c})^{2}
\end{array}\right.
$$

Simulations vs M̌P distribution

Wishart Matrix, $\mathrm{N}=900, \mathrm{n}=1000, \mathrm{c}=0.9$

Figure: Histogram of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}, \sigma^{2}=1$

Simulations vs M̌P distribution

Wishart Matrix, $\mathrm{N}=900$, $\mathrm{n}=1000$, $\mathrm{c}=0.9$

Figure: Marčenko-Pastur distribution for $c=0.9$

Simulations vs M̌P distribution

Wishart Matrix, $\mathrm{N}=500$, $\mathrm{n}=1000$, $\mathrm{c}=0.5$

Figure: Histogram of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}, \sigma^{2}=1$

Simulations vs M̌P distribution

Wishart Matrix, $N=500, n=1000, c=0.5$

Figure: Marčenko-Pastur distribution for $c=0.5$

Simulations vs M̌P distribution

Wishart Matrix, $N=100$, $n=1000, c=0.1$

Figure: Histogram of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}, \sigma^{2}=1$

Simulations vs M̌P distribution

Wishart Matrix, $\mathrm{N}=100$, $\mathrm{n}=1000$, $\mathrm{c}=0.1$

Figure: Marčenko-Pastur distribution for $c=0.1$

Simulations vs M̌P distribution

Wishart Matrix, $N=10, n=1000, c=0.01$

Figure: Histogram of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}, \sigma^{2}=1$

Simulations vs M̌P distribution

Wishart Matrix, $\mathrm{N}=10$, $\mathrm{n}=1000$, $\mathrm{c}=0.01$

Figure: Marčenko-Pastur distribution for $c=0.01$

Theorem (fluctuations of $\lambda_{\max }$ and Tracy-Widom distribution)

$$
\frac{N^{2 / 3}}{\Theta_{N}}\left\{\lambda_{\max }\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right)-\sigma^{2}\left(1+\sqrt{c_{n}}\right)^{2}\right\} \xrightarrow[N, n \rightarrow \infty]{\mathcal{L}} \mathbb{P}_{\mathrm{TW}}
$$

where

$$
c_{n}=\frac{N}{n} \quad \text { and } \quad \Theta_{N}=\sigma^{2}\left(1+\sqrt{c_{n}}\right)\left(\frac{1}{\sqrt{c_{n}}}+1\right)^{1 / 3}
$$

Remark

In this case, we also have Gaussian fluctuations of the linear statistics in the same scale as for the other models.

Non-Hermitian Matrices and the circular law

Matrix model

Let \mathbf{X}_{N} be a $N \times N$ matrix

$$
\mathbf{X}_{N}=\left(\begin{array}{ccc}
X_{11} & \cdots & X_{1 N} \\
\vdots & & \vdots \\
X_{N 1} & \cdots & X_{N N}
\end{array}\right)
$$

- Consider matrix $\mathbf{Y}_{N}=\frac{1}{\sqrt{N}} \mathbf{X}_{N}$
- Beware that the eigenvalues are complex!

Non-Hermitian Matrices and the circular law

Non-hermitian matrix eigenvalues, $\mathbf{N}=\mathbf{2 0}$

Matrix model

Let \mathbf{X}_{N} be a $N \times N$ matrix

$$
\mathbf{X}_{N}=\left(\begin{array}{ccc}
X_{11} & \cdots & X_{1 N} \\
\vdots & & \vdots \\
X_{N 1} & \cdots & X_{N N}
\end{array}\right)
$$

Figure: Distribution of \mathbf{Y}_{N} 's eigenvalues

Non-Hermitian Matrices and the circular law

Non-hermitian matrix eigenvalues, $\mathrm{N}=\mathbf{5 0}$

Matrix model

Let \mathbf{X}_{N} be a $N \times N$ matrix

$$
\mathbf{X}_{N}=\left(\begin{array}{ccc}
X_{11} & \cdots & X_{1 N} \\
\vdots & & \vdots \\
X_{N 1} & \cdots & X_{N N}
\end{array}\right)
$$

Figure: Distribution of \mathbf{Y}_{N} 's eigenvalues

Non-Hermitian Matrices and the circular law

Non-hermitian matrix eigenvalues, $\mathrm{N}=100$

Matrix model

Let \mathbf{X}_{N} be a $N \times N$ matrix

$$
\mathbf{X}_{N}=\left(\begin{array}{ccc}
X_{11} & \cdots & X_{1 N} \\
\vdots & & \vdots \\
X_{N 1} & \cdots & X_{N N}
\end{array}\right)
$$

Figure: Distribution of \mathbf{Y}_{N} 's eigenvalues

Non-Hermitian Matrices and the circular law

Non-hermitian matrix eigenvalues, $\mathbf{N}=\mathbf{2 0 0}$

Matrix model

Let \mathbf{X}_{N} be a $N \times N$ matrix

$$
\mathbf{X}_{N}=\left(\begin{array}{ccc}
X_{11} & \cdots & X_{1 N} \\
\vdots & & \vdots \\
X_{N 1} & \cdots & X_{N N}
\end{array}\right)
$$

Figure: Distribution of \mathbf{Y}_{N} 's eigenvalues

Non-Hermitian Matrices and the circular law

Matrix model

Let \mathbf{X}_{N} be a $N \times N$ matrix

$$
\mathbf{X}_{N}=\left(\begin{array}{ccc}
X_{11} & \cdots & X_{1 N} \\
\vdots & & \vdots \\
X_{N 1} & \cdots & X_{N N}
\end{array}\right)
$$

Figure: Distribution of \mathbf{Y}_{N} 's eigenvalues

Non-Hermitian Matrices and the circular law

Matrix model

Let \mathbf{X}_{N} be a $N \times N$ matrix

$$
\mathbf{X}_{N}=\left(\begin{array}{ccc}
X_{11} & \cdots & X_{1 N} \\
\vdots & & \vdots \\
X_{N 1} & \cdots & X_{N N}
\end{array}\right)
$$

Figure: The circular law (in red)

- Consider matrix $\mathbf{Y}_{N}=\frac{1}{\sqrt{N}} \mathbf{X}_{N}$
- Beware that the eigenvalues are complex!

Theorem: The Circular Law (Ginibre, Mehta, Girko, Tao \& Vu, etc.)
The spectrum of \mathbf{Y}_{N} converges to the uniform probability on the disc

The circular law

Theorem

Assume that $\mathbb{E}\left(X_{i j}\right)=0$ and $\mathbb{E}\left|X_{i j}\right|^{2}=\sigma^{2}$. Let $Y_{N}=\frac{X_{N}}{\sqrt{N}}$, then

$$
\text { a.s. } \quad \mu_{N}^{Y}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}\left(Y_{N}\right)} \xrightarrow[N \rightarrow \infty]{\text { weakly }} \quad \frac{1}{\pi \sigma^{2}} \mathbf{1}_{\left\{x^{2}+y^{2} \leq \sigma^{2}\right\}} d x d y
$$

The spectral radius
Assume $\mathbb{E}\left|X_{i j}\right|^{4}<\infty$ and consider the spectral radius

$$
\rho\left(Y_{N}\right)=\max \left\{|\lambda|, \lambda \in \operatorname{spectrum}\left(Y_{N}\right)\right\}
$$

Then

$$
\begin{array}{|lll|}
\hline \rho\left(Y_{N}\right) & \xrightarrow{\text { a.s. }} & \sigma \\
\hline
\end{array}
$$

Link for May's criteria for stability

$\mathcal{J}=-I_{n}+\mathbf{X}_{\mathbf{N}}$, with $X_{i j}$ is $\operatorname{Ber}(\mathrm{C}) \cdot \mathcal{N}\left(0, \sigma^{2}\right)$, so that the equilibrium is stable iif

$$
\sqrt{N C} \sigma<1
$$

Fluctuations in the non-Hermitian case

Fluctuations of linear statistics (Rider, Silverstein)

Under appropriate assumptions on the moments of X_{12}, for any analytic function f,

$$
N\left(\frac{1}{N} \sum_{i=1}^{N} f\left(\lambda_{i}\left(\mathbf{Y}_{N}\right)\right)-f(0)\right)
$$

converges to a Gaussian variable, with mean zero and variance $\frac{1}{\pi} \int\left|f^{\prime}(z)\right|^{2} \mathrm{~d} z$.

Fluctuations of spectral radius (Kostlan)

If X_{11} is a Gaussian random variable (Ginibre matrix), then $\rho\left(\mathbf{Y}_{N}\right)$ has Gumbel fluctuations. More precisely, if $c_{N}:=\log N-2 \log \log N-\log (2 \pi)$, for any $x \in \mathbb{R}$,

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(2 \sqrt{N c_{N}}\left(\rho\left(\mathbf{Y}_{N}\right)-\left(1+\frac{1}{2} \sqrt{\frac{c_{N}}{N}}\right)\right) \leq x\right)=e^{-e^{-x}}
$$

Another model of non-Hermitian matrices: elliptic law

Model

- the diagonal entries are iid and independent of the rest of the matrix, $E X_{11}=0$ and $E X_{11}^{2}<\infty$,
- for $i \neq j$, the pair $\left(X_{i j}, X_{j i}\right)$ is independent of the rest of the matrix, iid

Another model of non-Hermitian matrices: elliptic law

Model

- the diagonal entries are iid and independent of the rest of the matrix, $E X_{11}=0$ and $E X_{11}^{2}<\infty$,
- for $i \neq j$, the pair $\left(X_{i j}, X_{j i}\right)$ is independent of the rest of the matrix, iid
- $E X_{12}=E X_{21}=0, E X_{12}^{2}=E X_{21}^{2}=1, E\left|X_{12}\right|^{4}<\infty, E\left|X_{21}\right|^{4}<\infty$, $E\left(X_{12} X_{21}\right)=\rho \in(-1,1)$.
As before, we set $\mathbf{Y}_{N}=\frac{1}{\sqrt{N}} \mathbf{X}_{N}$

Global behavior (Fyodorov, Girko, Khoruzhenko, Naumov, etc.)

The empirical distribution of the eigenvalues converges to the uniform distribution on the ellipse :

$$
\mathcal{E}_{\rho}:=\left\{(x, y) \in \mathbb{R}^{2} ; \frac{x^{2}}{(1+\rho)^{2}}+\frac{y^{2}}{(1-\rho)^{2}} \leq 1\right\}
$$

Local behavior (Renfrew)

For any $\delta>0$, a.s. for N large enough, there is no eigenvalue of \mathbf{Y}_{N} outside a δ-neighborhood of \mathcal{E}_{ρ}.

Spiked models

General idea

If you take your favorite random matrix model and add a deterministic matrix with low rank (that is the rank stays bounded as N goes to infinity), then

- the global behavior is not affected
- the behavior of extreme eigenvalues can be affected drastically if the perturbation is strong enough.
There is a huge litterature on the subject...
The simplest case can be stated as follows :

Wigner case

We denote by Θ_{N} a rank one matrix with eigenvalue θ and delocalized eigenvectors. For example,

$$
\boldsymbol{\Theta}_{N}:=\theta \mathbf{u u}^{*},
$$

with u uniform on the sphere in dimension N. Let \mathbf{Y}_{N} be a Wigner matrix as defined earlier and $\lambda_{\max }:=\lambda_{\max }\left(\mathbf{Y}_{N}+\boldsymbol{\Theta}_{N}\right)$.
Then,

- if $\theta \leq 1, N^{2 / 3}\left(\lambda_{\max }-2\right)$ converges to a Tracy-Widom distribution,
- if $\theta>1, \sqrt{N}\left(\lambda_{\max }-\left(\theta+\frac{1}{\theta}\right)\right)$ converges to a Gaussian distribution.

Simulations

Simulations

$\mathrm{N}=800, \mathrm{n}=2000, \operatorname{sqrt}(\mathrm{c})=0.63$, theta=[0.1]

Figure: Spiked model - strength of the perturbation $\theta=0.1$

Simulations

$\mathrm{N}=800, \mathrm{n}=2000, \operatorname{sqrt}(\mathrm{c})=0.63$, theta=[0.1]

Figure: Spiked model - strength of the perturbation $\theta=0.1$

Simulations

$\mathrm{N}=800, \mathrm{n}=2000, \operatorname{sqrt}(\mathrm{c})=0.63$, theta=[0.5]

Figure: Spiked model - strength of the perturbation $\theta=0.5$

Simulations

$\mathrm{N}=800, \mathrm{n}=2000, \operatorname{sqrt}(\mathrm{c})=0.63$, theta=[0.5]

Figure: Spiked model - strength of the perturbation $\theta=0.5$

Simulations

$$
\mathrm{N}=400, \mathrm{n}=1000, \text { sqrt(c)=0.63, theta=[} 1 \text {] }
$$

Figure: Spiked model - strength of the perturbation $\theta=1$

Simulations

$$
\mathrm{N}=400, \mathrm{n}=1000, \text { sqrt(c)=0.63, theta=[} 1 \text {] }
$$

Figure: Spiked model - strength of the perturbation $\theta=1$

Simulations

$\mathrm{N}=800, \mathrm{n}=2000$, sqrt(c) $=0.63$, theta=[2]

Figure: Spiked model - strength of the perturbation $\theta=2$

Simulations

$\mathrm{N}=800, \mathrm{n}=2000$, sqrt(c)=0.63, theta=[2]

Figure: Spiked model - strength of the perturbation $\theta=2$

Simulations

$\mathrm{N}=800$, $\mathrm{n}=2000$, sqrt(c) $=0.63$, theta=[3]

Figure: Spiked model - strength of the perturbation $\theta=3$

Simulations

$\mathrm{N}=800$, $\mathrm{n}=2000$, sqrt(c) $=0.63$, theta=[3]

Figure: Spiked model - strength of the perturbation $\theta=3$

Many interesting questions in RMT arise from ecological models.

1. Normalization and feasibility,
2. General interaction matrix models

Network type	Statistical Features	RMT Results
random	$Z_{i j}$ i.i.d. and $\mathbb{E} Z_{i j}=0$	Circular law
structured	$Z_{i j}=0$ for $(i, j) \in \mathcal{S}$	Sparse variance profiles / open
mutualistic	$\mathbb{E} Z_{i j}>0$	open
predator-pray	$Z_{i j}=-Z_{j i}$	open
density-dependent	$\mathcal{J}=D Z$	open

Figure: Various types of ecological networks

Thank you for your attention!

[^0]: $$
 \mathbb{E} X_{i j}=0 \text { and } \mathbb{E}\left|X_{i j}\right|^{2}=1
 $$

 $$
 \text { and } X_{i j}=\overline{X_{j i}} \text { (for symmetry). }
 $$

 - consider the spectrum of Wigner matrix $\mathbf{Y}_{N}=\frac{\mathbf{x}_{N}}{\sqrt{N}}$

