Tutorial on Random Matrix Theory

Myléne Maida
mylene.maida@univ-lille.fr

Université de Lille

Workshop KARATE - Marne-la-Vallée - december 2019



Quick reminder of the motivations

The paradigm of May (~ 1971)

General idea : for complex multispecies networks, detailed interactions are rarely
available, random matrix models may be relevant.

More precisely, an ecological network is modelled as a system of ODEs of the form:

da;(t)
dt

:fi(alv"'vaN)v 1 SZS N7
with a; the abundance of species 1.
Assume the existence of an equilibrium (a7, ..., a%;) and linearise near equilibrium.

Namely, if we set a;(t) = a} + x;(t), the dynamics can be approximated at first order
by the linear system:

d *
2ty = 7@ x(0),
with J(a*)ge := %(GT’ ce ).

May'’s model : the entries of J are i.i.d. random variables (except on the diagonal).



Lotka-Volterra models
The dynamics of interacting species may be described by the Lotka-Volterra equations:

N
da;(t) Zij
7;t =a; [ r; —0Oa; + JEZI Zg a;

where
> r; is the intrinsic growth rate of species 4
> 0 >0 is a friction coefficient (intraspecific competition)

> Z;; stands for the interactions j — 4.

The equilibrium a* is given by

* Z -t
a :(GIN_W) r

The Jacobian J(a*), which is explicit

7(a*) = ding(a”) (01 + 2 )

It is a special case of density-dependent models, for which
J(a*) = diag(a™) - M,

where M may depend on diag(a*).



Large Random Matrices

Random matrices

Itisa N x N matrix
Yiu -+ Yy

Yy =
Y1 -+ YN

whose entries (Yj;; 1 <4,57 < N) are random variables.

Matrix features
Of interest are the following quantities
> Yn's spectrum (\;, 1 <4 < N) and eigenvectors

> Extreme eigenvalues (Apmin and Amax if spectrum is real, spectral radius,
eigenvalue with maximal real part etc.)

> Linear statistics Trace f(Y ) = f;l f(Ai) and their fluctuations

Asymptotic regime

Often, the description of the previous features takes a simplified form as

N — o0



Wigner Matrices

Matrix model

Let X = (Xj;) a real symmetric (or
Hermitian) N X N matrix with i.i.d.
entries on and above the diagonal with

EX;; =0and E|X;;> =1

and X;; = Xj; (for symmetry).
> consider the spectrum of Wigner

matrix | Yy = X\/—%
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Wigner Matrices

Matrix model

Let X = (X;;) a real symmetric (or
Hermitian) N x N matrix with i.i.d.
entries on and above the diagonal with

EX;; =0and E|X;]? =1

and X;; = Xj; (for symmetry).
> consider the spectrum of Wigner

matrix | Yy = )7(-%

Wigner Matrix, N= 50
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Wigner Matrices

Matrix model

Let X = (X;;) a real symmetric (or
Hermitian) N x N matrix with i.i.d.
entries on and above the diagonal with

EX;; =0and E|X;]? =1

and X;; = Xj; (for symmetry).
> consider the spectrum of Wigner

matrix | Yy = )\5—%

Wigner Matrix, N= 100
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Wigner Matrices

Matrix model

Let X = (X;;) a real symmetric (or
Hermitian) N x N matrix with i.i.d.
entries on and above the diagonal with

EX;; =0and E|X;]? =1

and X;; = X; (for symmetry).
> consider the spectrum of Wigner

matrix | Yy = )\5—%

Wigner Matrix, N= 500
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Wigner Matrices

Matrix model

Let X = (X;;) a real symmetric (or
Hermitian) N x N matrix with i.i.d.
entries on and above the diagonal with

EX;; =0and E|X;]? =1

and X;; = X; (for symmetry).
> consider the spectrum of Wigner

matrix | Yy = )\5—%

Wigner Matrix, N= 1500

Density
0.10 0.15 0.25 0.30
| | | |

0.05
I

r T T T 1
2 - 0 1 2

spectrum

Figure: Histogram of the eigenvalues of Y



Wigner Matrices

Matrix model

Let X = (Xj;) a real symmetric (or
Hermitian) N X N matrix with i.i.d.
entries on and above the diagonal with

EX;; =0and E|X;;> =1

and X;; = Xj; (for symmetry).

> consider the spectrum of Wigner

matrix

Wigner's theorem (1948)

Yy =

XN

VN

Wigner Matrix, N= 1500
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"The histogram of a Wigner matrix converges to the semi-circular distribution”




About normalisation

Wigner's theorem can be written as follows :

ve—®

1 al a.s. 2 4— a2
¥ o) 2 [0 = [ o),

A quick computation

1N
¥ 2 N(YN)?
N=

1 1
N’I‘race(YN)2 = ﬁTrace(XN)2

1 Y 1
2
=37 2 XuXii= g5 2 Xl
i,j=1 i,j=1
so that

E 1N)\vY 2) =1

In the Lotka-Volterra model, this normalisation corresponds to § = 1/2.



Fluctuations of linear statistics

Many results starting with Johansson (1999) lead to the following results: if the
entries have enough finite moments,

> for smooth test functions f,

1 N

converges to a Gaussian variable, with mean and variance depending on f.
> for f(z) = 1[y,00) (@), we let Ny(Yn) := #{i; \i(Yn)) > y}. If the first fourth
moment match with a normal variable, Var(Ny (Y y)) = (# + 0(1)) log N,

and
Ny(Yn) — No([y,o0))
Var(Ny(Yn))

converges to a normal random variable.




Local spectrum behavior for Wigner matrices

Let
Amax = Amax (YN) and Amin = Amin (YN)

Theorem (convergence of extremal eigenvalues)

If ]E‘Xij|4 < 00, then

)\max a.s. 2 and )\min a.s. 72
N—oo N— o0

Theorem (fluctuations of Apax and Tracy-Widom distribution)

If lims— o0 s*P(| X12| > 5) = 0, we have

N3 Dmax (YN) — 2} —5— Prw.
N — oo

Remark

> Notice the strange normalization N2/3

> This stems from the \/z-shape of the density at the edge (see later)



Details on Tracy-Widom distribution

Tracy-Widom distribution is defined by

> its cumulative distribution function
> 2 2
Priv(a) =esp{ = [ (u=aP?w) du]
xT

> where
¢"(z) = zq(z) + 2¢%(z) and q(z) ~ Ai(z) as ¢ — oo .
x +— Ai(z) being the Airy function.
Don't bother .. just download it

> For simulations, cf. R Package ’RMTstat’, by Johnstone et al.

> Also, Folkmar Bornemann (TU Miinchen) has developed fast matlab code



Tracy-Widom curve
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Figure: Tracy-Widom density
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A heuristic on the normalization N2/3

#{)\i;?fs} N f227€ \V4a—a?2 de

> By Wigner's theorem, o

» Hence "for small ¢”,

2 4 — 2
#{Ni>2-¢) ~ N Y27 e
2—¢ 27
4 2
~ N— V2—zdr = cNe&¥/?
21 Jo—e

> To have finitely many values in (2 — €, 00), we want ‘ #{\i>2—-¢} = O(1) ‘

> We choose ¢ = ¢cN~2/3 so that | Ne?/2 = O(1) | and

#{0i>2-cN723} = NP\ -2)>c = 0OQ)

> This suggests to study the fluctuations of
N3 (Amax — 2)

> The N2/3 normalization is strongly associated to the \/z-behaviour of the density
at the corresponding edge



Mar&enko-Pastur's theorem
Theorem
» Consider a N x n matrix X with i.i.d. entries
EX;; =0, E|X;>=0%.
with N and n of the same order and Ly the spectral measure of %XNX*N:
N

1
N D O (n1XaXY) -
i=1

Cn ——>c€(0,0), Ly=
n—o0

I
3=

» Then almost surely (= for almost every realization)

Ly ——— Pyp in distribution
N,n—oco

where Py is MarEenko-Pastur distribution:

Pyp (dz) = (1 _ %)+50(dx) N \/[(/\Jr —x)(z— A7), &

2mo2xe
with { :\\:L

o2(1 - /)
a?(1+e)?



Simulations vs MP distribution

Wishart Matrix, N=900 , n= 1000, c= 0.9
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Simulations vs MP distribution

Wishart Matrix, N=900 , n= 1000, c= 0.9
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Figure: Mar&enko-Pastur distribution for ¢ = 0.9
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Simulations vs MP distribution

Wishart Matrix, N= 500 , n= 1000, c= 0.5
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Simulations vs MP distribution

Wishart Matrix, N= 500 , n= 1000, c= 0.5
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Figure: Mar&enko-Pastur distribution for ¢ = 0.5
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Simulations vs MP distribution

Wishart Matrix, N=100, n=1000, c= 0.1
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Simulations vs MP distribution

Wishart Matrix, N=100, n=1000, c= 0.1

Density
0.4 0.6 0.8 1.0 1.2
L L

0.2

0.0

T T T 1
0 1 2 3

spectrum
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Simulations vs MP distribution

Wishart Matrix, N=10, n=1000, c= 0.01
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Simulations vs MP distribution

Wishart Matrix, N=10, n=1000, c= 0.01
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Figure: Mar&enko-Pastur distribution for ¢ = 0.01
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Theorem (fluctuations of A\yax and Tracy-Widom distribution)

N?2/3 1
{/\max (*XNX}‘\]) — 0 (1+\/Cn) } ——%PTW
ON n N,n—oc0
where
N 1/3
Cn:; and @NZU ( +\/Cn) (Tn“rl)
Remark

In this case, we also have Gaussian fluctuations of the linear statistics in the same
scale as for the other models.
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Non-Hermitian Matrices and the circular law

Matrix model

Let X be a N x N matrix

X1 - Xan
Xy = . .
Xn1 - XNN
> Consider matrix | Yy = ﬁXN

> Beware that the eigenvalues are
complex!

15



Non-Hermitian Matrices and the circular law

Non-hermitian matrix eigenvalues, N= 20

Matrix model . .
Let X be a N x N matrix .
o 7 ° ) °
X1 - Xin - o R
XN _ % 24 ° ° o o
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XNn1 -+ XnNN B
P ° o
» Consider matrix | Yy = =X ° °
N=UNTN e
> Beware that the eigenvalues are o 05 00 05 1o
complex! Re(spectrum)

Figure: Distribution of Y n's eigenvalues



Non-Hermitian Matrices and the circular law

Matrix model
Let X be a N x N matrix

X111 - Xain -
Xy = §2q
: : £
XnN1 XNN
» Consider matrix | Yy = ﬁXN .

> Beware that the eigenvalues are
complex!

Non-hermitian matrix eigenvalues, N= 50
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Non-Hermitian Matrices and the circular law

Matrix model

Let X be a N x N matrix

X11
Xy =
XnN1

» Consider matrix

Xin

XNN

Yy =-LXy

1
VN

> Beware that the eigenvalues are

complex!

Im(spectrum)

10
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Non-hermitian matrix eigenvalues, N= 100
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Figure: Distribution of Y n's eigenvalues



Non-Hermitian Matrices and

Matrix model

Let X be a N x N matrix

X11
Xy =
XnN1

» Consider matrix

Xin

XNN

Yy = Xy

> Beware that the eigenvalues are

complex!

Im(spectrum)

the circular law

Non-hermitian matrix eigenvalues, N= 200
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Figure: Distribution of Y n's eigenvalues



Non-Hermitian Matrices and the circular law
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Non-hermitian matrix eigenvalues, N:
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Matrix model

Let X be a N x N matrix
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> Beware that the eigenvalues are

> Consider matrix | Y
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complex!

Figure: Distribution of Y n's eigenvalues
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Non-Hermitian Matrices and the circular law
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Non-hermitian matrix eigenvalues, N:
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> Consider matrix | Y
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Re(spectrum)

complex!

Figure: The circular law (in red)

Theorem: The Circular Law (Ginibre, Mehta, Girko, Tao & Vu, etc.)

‘ The spectrum of Yy converges to the uniform probability on the disc ‘
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The circular law

Theorem
Assume that E(X;;) = 0 and E|X;;|? = 02. Let Yy = \/—%, then

N
y _ weakly 1
a.s. N = E )\ (Yn) ]V—>—oo> @1{12+y2§o‘2} dx dy

The spectral radius
Assume E|X;;|* < co and consider the spectral radius
p(Yn) = max{|A|, X € spectrum(Yy)}

Then

p(YN) a.s. o
N—oo

Link for May's criteria for stability
J = —In + X, with X;; is Ber(C) - N(0, 02), so that the equilibrium is stable iif

VNCo < 1.



Fluctuations in the non-Hermitian case

Fluctuations of linear statistics (Rider, Silverstein)

Under appropriate assumptions on the moments of X2, for any analytic function f,

1 N
N <N D> (YY) — f(0)>
=1

converges to a Gaussian variable, with mean zero and variance %f |f(2)]2dz.

Fluctuations of spectral radius (Kostlan)

If X11 is a Gaussian random variable (Ginibre matrix), then p(Y ) has Gumbel
fluctuations. More precisely, if ¢y := log N — 2loglog N — log(2m), for any z € R,

1 CN —x
i - S ) <z) =
ngnooIP’ (2 Nen (p(YN) (1 + VN ) < :r) e
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Another model of non-Hermitian matrices : elliptic law

Model

> the diagonal entries are iid and independent of the rest of the matrix, EX;1 =0
and EX121 < 00,

> for i # j, the pair (X;;, X;;) is independent of the rest of the matrix, iid

18



Another model of non-Hermitian matrices : elliptic law
Model

> the diagonal entries are iid and independent of the rest of the matrix, EX;1 =0
and EXZ < oo,

> for i # j, the pair (X;;, X;;) is independent of the rest of the matrix, iid

> EX12 = EX91 =0, EX}, = EX2, =1, E|X12|* < 00, B|X21|* < o0,
E(X12X21) =pcE (*1, 1).

IXN

As before, we set | Yy = 7%

Global behavior (Fyodorov, Girko, Khoruzhenko, Naumov, etc.)

The empirical distribution of the eigenvalues converges to the uniform distribution on
the ellipse :

x2 2
= {@n R s+ gl <1y

Local behavior (Renfrew)

For any § > 0, a.s. for N large enough, there is no eigenvalue of Yy outside a
d-neighborhood of &,.



Spiked models

General idea
If you take your favorite random matrix model and add a deterministic matrix with low
rank (that is the rank stays bounded as N goes to infinity), then

> the global behavior is not affected

> the behavior of extreme eigenvalues can be affected drastically if the perturbation
is strong enough.
There is a huge litterature on the subject...
The simplest case can be stated as follows :

Wigner case

We denote by ® a rank one matrix with eigenvalue 6 and delocalized eigenvectors.
For example,
Opn = fuu”,

with » uniform on the sphere in dimension N. Let Yy be a Wigner matrix as defined
earlier and Amax ‘= Amax(YnN + OnN).
Then,

> if 6 <1, N2/3 (Apmax — 2) converges to a Tracy-Widom distribution,
» if0>1, VN ()\max — (0 + é)) converges to a Gaussian distribution.



Simulations
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Simulations

Density
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Figure: Spiked model - strength of the perturbation 6§ = 0.1
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Simulations

Density
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Simulations

Density

N= 800, n=2000, sqrt(c)=0.63, theta=[ 0.5 ]
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Figure: Spiked model - strength of the perturbation § = 0.5
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Simulations

Density
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Figure: Spiked model - strength of the perturbation § = 0.5
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Simulations

Density

N= 400, n=1000, sqrt(c)=0.63, theta=[ 1]
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Figure: Spiked model - strength of the perturbation 6 = 1
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Simulations

Density

N= 400, n=1000, sqrt(c)=0.63, theta=[ 1]
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Figure: Spiked model - strength of the perturbation 6 = 1
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Simulations

Density

N= 800, n=2000, sqrt(c)=0.63, theta=[ 2 ]
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Figure: Spiked model - strength of the perturbation 6 = 2
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Simulations

Density

N= 800, n=2000, sqrt(c)=0.63, theta=[ 2 ]
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Figure: Spiked model - strength of the perturbation 6 = 2
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Simulations

Density

N= 800, n=2000, sqrt(c)=0.63, theta=[ 3 ]
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Figure: Spiked model - strength of the perturbation § = 3
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Simulations

Density

N= 800, n=2000, sqrt(c)=0.63, theta=[ 3 ]
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Figure: Spiked model - strength of the perturbation § = 3
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To conclude

Many interesting questions in RMT arise from ecological models.

1. Normalization and feasibility,

2. General interaction matrix models

[ Network type | Statistical Features | RMT Results |
random Zij iid. and EZ;; =0 | Circular law
structured Zij =0 for (i,j) € S Sparse variance profiles / open
mutualistic EZ;; >0 open
predator-pray Zij = —Zji open
density-dependent | J = DZ open

Figure: Various types of ecological networks

Thank you for your attention !
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