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Food webs historically depict communities 
with static structures

« Food-cycle among the 
animals on Bear Island, a 
barren spot in the arctic 
zone, South of Spitzbergen. 
(The dotted lines represent 
probable food relations not 
yet proved.) The best way to 
read the diagram is to start 
at "marine animals" and 
follow the arrows. »

Picture from Dunne 2009
Adapted from Elton’s « Animal ecology » 1927



  

Quantifying trophic links brings on key informations
 on ecosystems functioning and stability

Agricultural soil food web from de Ruiter et al. 1995, Science

● Bottom-up and top-down effects 
act together ;

● No correlation between interaction 
strength and community stability ;

● The structure of interaction 
strengths matters to community 
stability.



  

Food web models: « A plague of parameters »

e.g., Rosenzweig-MacArthur model

1 predator
1 prey

p predators
n prey
L links

dPi

dt
=Pi(−mi+

∑
k=1

n

ei γki N k

1+∑
j∈Prey (i)

γ ji hi N j

)

dN k

dt
=Nk (αk−βk N k−∑

i=1

p γki Pi
1+∑l∈Prey( i)

γli hi N l

)

dP

dt
=P (−m+

e γN
1+γhN

)

dN

dt
=N (α−βN−

γ P
1+γ hN

)

6 parameters
2×p+2×n+2×L

L≥max (n , p)
parameters

Yodzis & Innes 1992, Am. Nat.



  

Food web models: « A plague of parameters »

e.g., Rosenzweig-MacArthur model

1 predator
1 prey

p predators
n prey
L links

dPi

dt
=Pi(−mi+

∑
k=1

n

ei γki N k

1+∑
j∈Prey( i)

γ ji hi N j

)

dNk

dt
=Nk (αk−βk N k−∑i=1

p γki Pi
1+∑

l∈Prey(i)
γli hi Nl

)

dP

dt
=P (−m+

e γN
1+γhN

)

dN

dt
=N (α−βN−

γ P
1+γ hN

)

Parameterisation matters!
Non-linearity can create brutal changes of 
dynamics with small changes of parameter values

Yodzis & Innes 1992, Am. Nat.



  

Different parameterisation strategies
for different objectives

Model type

‘Tactic’‘Strategic’

Models for explanation
Qualitative predictions

Models for 
quantitative forecasts

McCallum, 2008 « Population parameters (...) »
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Different parameterisation strategies
for different objectives

Model type

‘Tactic’‘Strategic’

Models for explanation
Qualitative predictions

Models for 
quantitative forecasts

Amount of data needed

Arbitrary parameterisation
Bifurcation analysis
Structural stability analysis

Allometric scaling

McCallum, 2008 « Population parameters (...) »
Gauzens et al. 2019, Meth. Ecol. Evol.
Rohr et al. 2014, Science

Biomass flow approaches



  

Different parameterisation strategies
for different objectives

Model type

‘Tactic’‘Strategic’

McCallum, 2008 « Population parameters (...) »
Gauzens et al. 2019, Meth. Ecol. Evol.
Rohr et al. 2014, Science

Models for explanation
Qualitative predictions

Models for 
quantitative forecasts

Amount of data needed

Arbitrary parameterisation
Bifurcation analysis
Structural stability analysis

Allometric scaling

Biomass flow approaches

Different strategies which helped to better grasp the dynamics of ecological communities.



  

Moving beyond a frozen picture of food webs:
Capturing food web seasonality

Humphries et al. 2017, Integr. Comp. Biol.

Summer
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The food web of the Bialowieza forest: a case study

Source : UNESCO



  

The food web of the Bialowieza forest:
A topology that changes between seasons

Saavedra et al. 2016, Ecology



  

The food web of the Bialowieza forest:
A topology that changes between seasons

dPi

dt
=Pi(−mi+ei γki N k)

dNk

dt
=Nk (αk−Nk−γki Pi)

Predators’ growth rates

Preys’

Mortality rate
Conversion efficiency

Intrinsic growth rate

Attack rate
Saavedra et al. 2016, Ecology



  

The food web of the Bialowieza forest:
A topology that changes between seasons

dPi

dt
=Pi (−mi+ei∑

k

γki Nk )

dN k

dt
=Nk (αk−Nk−∑

i

γki Pi)
{P* ,N *}>0

Looking for a 
feasible equilibrium What are the 

parameters allowing 
such equilibrium?

DF={mi=ei γ1 i N1+⋯+ei γSN i N SN
∧αi=Ni+γi1P1+⋯+γi SP PSP with N i>0∧Pi>0}

Defining a feasibility domain

Ω(γ)=
|det (A)|

∏
j

(∑
i

Aij)
And its size A=[diag (e γt) I

0 γ]with

Saavedra et al. 2016, Ecology



  

The food web of the Bialowieza forest:
A topology that changes between seasons

dPi

dt
=Pi (−mi+ei∑

k

γki Nk )

dN k

dt
=Nk (αk−Nk−∑

i

γki Pi)

dPi

dt
=Pi (−mi+ei∑

k

γki Nk )

dN k

dt
=Nk (αk−Nk−∑

i

γki Pi)

Ω(γ)=
|det (A)|

∏
j

(∑
i

A ij)
Ω(γ)=

|det (A)|

∏
j

(∑
i

A ij)

+ their randomisations to test the effect of their interaction distribution

Saavedra et al. 2016, Ecology



  

The food web of the Bialowieza forest:
A topology that changes between seasons

Saavedra et al. 2016, Ecology

Seasons differ in the probability of the community to persist.



  

The food web of the Bialowieza forest:
A topology that changes between seasons

Saavedra et al. 2016, Ecology

The changes in food web 
structure are such that 
their minimise the variation 
of community persistence.



  

The food web of the Bialowieza forest:
A topology that changes between seasons

Saavedra et al. 2016, Ecology

The changes in food web 
structure are such that 
their minimise the variation 
of community persistence.

But what would realistic parameters result in?
What would happen if we modelled predation seasonality?



  

Food web parameterisation:
Building on a decade of wildlife surveys

● Collection of scats and pellets during summer and winter

→ biomass fractions in predators’ diet ↔dietary preferences 
for each season (p

ki
)

● Estimates of daily food intake of predators (DFI
i
 for adults and 

juveniles)

● Estimates of seasonal densities of prey (R
k
)

● Body masses (M
i
, M

k
)

● Estimates of litter/brood size, birth rates

A focus on a given time period 1985±1 → 1995±1, 
and on the Polish part of the Bialowieza forest



  

Food web parameterisation:
Building on a decade of wildlife surveys

A focus on a given time period 1985±1 → 1995±1, 
and on the Polish part of the Bialowieza forest

Year n

Summer Winter

16th April to 30th September
= 168 days

1st October to 15th April
= 197 days



  

A basic model for the food web of the Bialowieza forest

General Lotka-Volterra model with predator self-regulation

dPi

dt
=Pi(−mi−gi Pi+

∑
k=1

n

ei f ki(N )

Mi

)

dNk

dt
=Nk (rk−βk Nk )−∑

i=1

p

(
Pi f ki(N )

Mi

)



  

A basic model for the food web of the Bialowieza forest

dPi

dt
=Pi(−mi−gi Pi+

∑
k=1

n

ei f ki(N )

Mi

)

dNk

dt
=Nk (rk−βk Nk )−∑

i=1

p

(
Pi f ki(N )

Mi

)

General Lotka-Volterra model with predator self-regulation

Linear terms for
● Predator baseline mortality rates
● Prey intrinsic growth rates



  

A basic model for the food web of the Bialowieza forest

General Lotka-Volterra model with predator self-regulation

Non-linear self-regulation for both prey 
and predator species

For prey
Feeding resources are not 
infinite

For predators
Territoriality constrains 
predators densities

dPi

dt
=Pi(−mi−gi Pi+

∑
k=1

n

ei f ki(N )

Mi

)

dNk

dt
=Nk (rk−βk N k−

∑
i=1

p

Pi f ki(N )

Mi

)



  

A basic model for the food web of the Bialowieza forest

General Lotka-Volterra model with predator self-regulation to describe biomass growth

f ki(N)=
γki N k

aki N k

1+∑ j∈Prey(i)
a ji hi N j

N
k

f
ki
(N)

Type I/Type II 
functional responses

dPi

dt
=Pi(−mi−gi Pi+

∑
k=1

n

ei f ki(N )

Mi

)

dNk

dt
=Nk (rk−βk N k−

∑
i=1

p

Pi f ki(N )

Mi

)

Per capita killing rate (g/y)



  

First step: quantifying per capita predators’ intakes

Ĝki
W≈(DFI )i×pki

W×(ndays)i
W

Ĝki
S≈(DFI )i×pki

S×(ndays)i
S

Number of days of presence in the 
forest during Summer (d) for the 
predator i

Daily food intake (g/d)

Preference of predator i for 
prey k during Winter



  

Quantifying discovery rates for
the type I functional response 

f ki(N )=γki N k
Discovery rate (ha/y)
= the area annually explored by the predator i to find prey k

Gki
S≈ηS×γki

S× N̄ k

S

Gki
W≈ηW×γki

W×N̄ k

W
⇒

γki
S≈

Gki
S

ηS×N̄ k

S

γki
W≈

Gki

W

ηW×N̄ k

W

Gki=∫y

y+1

f ki(N )dt=∫
y

y+1/2
f ki(N )dt+∫

y+1/2

y+1

f ki(N )dt

Gki
S ≈ ηS×f ki(N̄

S) Gki
W ≈ ηW×f ki(N̄

W )



  

Quantifying discovery rates and handling times for
the type II functional response

f ki(N)=
aki N k

1+∑ j∈Prey(i)
a ji hi N j

Discovery rate (ha/y)
= the area annually explored by the predator i to find prey k

Handling time (y/g)

N
k

f
ki
(N)

1/h
i

Maximum annual intake (g/y)

1

hi
≈((DFI )i

Adult+bi×(DFI )i
Juvenile)×365

Predator i birth rate
(N juveniles / adult / year)



  

Quantifying discovery rates and handling times for
the type II functional response

f ki(N)=
aki N k

1+∑ j∈Prey(i)
a ji hi N j

Discovery rate (ha/y)
= the area annually explored by the predator i to find prey k

αi(N )=∑
k
aki N k

The total biomass of prey discovered by one predator i (g/y)

Following Baudrot et al. (2016 in Ecology):
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k
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Quantifying discovery rates and handling times for
the type II functional response

f ki(N)=
aki N k

1+∑ j∈Prey(i)
a ji hi N j

Discovery rate (ha/y)
= the area annually explored by the predator i to find prey k

pki(N )=
aki N k

∑k
aki N k

=
aki N k

αi(N )

Ci=(Ci)
Searching+∑

k
(Ci)k

αi(N )=∑
k
aki N k

The total biomass of prey discovered by one predator i (g/y)

The preference of predator i for the prey k depends 
on prey relative densities

Predators either search or « handle » their prey

f ki(N )=
pki(N )×αi(N )×(Ci)

Searching

Ci

The proportion of searching individuals

Following Baudrot et al. (2016 in Ecology):



  

Quantifying discovery rates and handling times for
the type II functional response

f ki(N)=
aki N k

1+∑ j∈Prey(i)
a ji hi N j

Discovery rate (ha/y)
= the area annually explored by the predator i to find prey k

Ci=(Ci)
Searching+∑

k
(Ci)k Ci=(Ci)

Searching(1+hi×∑
k
pki(N )×αi(N ))

f ki(N )=
pki(N )×αi(N )

1+hi×∑
k
pkiαi(N )

The total biomass of prey discovered by one predator i (g/y)

The preference of predator i for the prey k depends 
on prey relative densities

αi(N )=∑
k
aki N k

pki(N )=
aki N k

∑k
aki N k

=
aki N k

αi(N )

f ki(N )=
pki(N )×αi(N )×(Ci)

Searching

Ci

Following Baudrot et al. (2016 in Ecology):



  

Quantifying discovery rates and handling times for
the type II functional response

f ki(N)=
aki N k

1+∑ j∈Prey(i)
a ji hi N j

Discovery rate (ha/y)
= the area annually explored by the predator i to find prey k

f ki(N )=
pki(N )×αi(N )

1+hi×αi(N )
For a given time t,

Gki=∫y

y+1

f ki(N )dt=∫
y

y+1/2
f ki(N )dt+∫

y+1/2

y+1

f ki(N )dt

Gki

S ≈
ηS×pki

S (NS)×αi

S (NS)

1+hi×αi
S(NS)

Gki

W ≈
ηW×pki

W (NW)×αi
W (NW )

1+hi×αi

W (NW )



  

Quantifying discovery rates and handling times for
the type II functional response

Gki=∫y

y+1

f ki(N )dt=∫
y

y+1/2
f ki(N )dt+∫

y+1/2

y+1

f ki(N )dt

Gki

S ≈
ηS×pki

S (NS)×αi

S (NS)

1+hi×αi
S(NS)

α̂i

S=

1
ηS×∑

k
Gki
S

1−
hi

ηS∑k
Gki

S

âki
S=
p̂ki
S×α̂i

S

N̄
S

Gki

W ≈
ηW×pki

W (NW)×αi
W (NW )

1+hi×αi

W (NW )

α̂i

W=

1
ηW×∑

k
Gki
W

1−
hi

ηW∑k
Gki

W

âki
W=
p̂ki
W×α̂i

W

N̄
W



  

Modelling a seasonal food web:
One model to simulate all seasons

χ̂S

χ̂W

χ̄

t t

χ(t)=χ̄(1+ϵχ sin (2π t)) χS>χW

χ(t)=χ̄(1+ϵχ sin (2π t+π
2

))

ϵχ χ̄

From an estimated rectangular signal...

...to a continuous (sinusoidal) signal

if

otherwise



  

Modelling a seasonal food web:
One model to simulate all seasons

χ̄

t

χ(t)=χ̄(1+ϵχ sin (2π t)) χS>χW

χ(t)=χ̄(1+ϵχ sin (2π t+π
2

))

ϵχ χ̄

if

otherwise

χ={r k , aki / γki }
dPi

dt
=Pi(−mi−gi Pi+

∑
k=1

n

ei f ki(N , t )

Mi

)

dNk

dt
=Nk (rk (t )−βk N k−

∑i=1

p

Pi f ki(N , t )

Mi

)

f ki(N , t)=
γki(t)Nk

aki(t)Nk

1+∑
j∈Prey( i)

aji(t)hi N j

= A non-autonomous ODE system



  

Modelling a seasonal food web:
One model to simulate all seasons

χ̄

t

χ(t)=χ̄(1+ϵχ sin (2π t)) χS>χW

χ(t)=χ̄(1+ϵχ sin (2π t+π
2

))

ϵχ χ̄

if

otherwise

χ={r k , aki / γki }
dPi

dt
=Pi(−mi−gi Pi+

∑
k=1

n

ei f ki(N , t )

Mi

)

dNk

dt
=Nk (rk (t )−βk N k−

∑i=1

p

Pi f ki(N , t )

Mi

)



  

Resulting dynamics: Annual cycles 

Type I Type II



  

Persistence is high but sensitive to estimates
of predator regulation

Type I Type II

Predators

Prey species Summer

Spring

Fall



  

Persistence is high but sensitive to estimates
of predator regulation

Type I Type II

Observed

Simulated
ĝ

i
 is model-based



  

Persistence is high but sensitive to estimates
of predator regulation

Type I Type II

Observed

Simulated
ĝ

i
 is a phenomenological 

estimate

Simulated
ĝ

i
 is model-based



  

Seasonal densities are reproduced



  

Seasonal densities are reproduced

Mostly species for 
which we have 
little information 
about their 
densities



  

Where are the errors?



  

Summary of the parameterisation of the seasonal
food web of the Bialowieza Forest

This parameterisation is site-specific.

i.e., âki=f (R
obs)

This facilitates comparison between sites.

But, it requires a lot of data.
There is a general trade-off between food 
web resolution and temporal resolution.

e.g., Boit et al. 2012, Ecol. Lett. ; Curtsdotter et al. 2019 J. Anim. Ecol.
vs. e.g., Hudson et al. 2013, Proc. R. Soc. B.



  

Summary of the parameterisation of the seasonal
food web of the Bialowieza Forest

● This parameterisation is site-specific.

Simulations produce life-like patterns of densities.

Model accuracy could be improved by collecting
missing data (mostly densities…).

Trade-off between persistence and accuracy.

A prerequisite to numerical experiments.



  

Summary of the parameterisation of the seasonal
food web of the Bialowieza Forest

● This parameterisation is site-specific.

● Simulations produce life-like patterns of densities.

Simulated dynamics are annual, but observations suggest a different story.

Fig. from Jedrzejewska & 
Jedrzejewski, 1998



  

Summary of the parameterisation of the seasonal
food web of the Bialowieza Forest

● This parameterisation is site-specific.

● Simulations produce life-like patterns of densities.

Simulated dynamics are annual, but observations suggest a different story.

Fig. from Jedrzejewska & 
Jedrzejewski, 1998



  

The case of cycling rodent dynamics

Fig. from Turchin & 
Hanski, 1997, Am. Nat.

● Widespread multiannual population fluctuations for 
many small rodents, especially at higher latitudes.

● Hypotheses are many !

Barraquand et al. 2017, Ecol. Lett., Myers, 2018, Proc. R. Soc. B

● Models of population dynamics usually focus on the 
interplay between predation and seasonality.

● BUT, it is often necessary to explore parameter 
space to find the parameterisation that mimic 
observed time series.



  

Seasonal models of population dynamics
often predict complex dynamics

Rinaldi et al. 1993,
Bull. Math. Biol.

e.g., Rosenzweig-
MacArthur model



  

Seasonal models of population dynamics
often predict complex dynamics

Period-doubling 
bifurcationsFold bifurcation

Neimark-Sacker 
bifurcation

Rinaldi et al. 1993,
Bull. Math. Biol.

e.g., Rosenzweig-
MacArthur model



  

From 2D-models to nD-models :
implications of scaling up or down food web models?

+

-

gi=0.01×ĝi gi= ĝi

Ingredients for more complex dynamics are gathered...

...provided predator’s regulation is low enough!



  

From 2D-models to nD-models :
implications of scaling up or down food web models?

Ostfeld & Keesing 2000,
TREE



  

From 2D-models to nD-models :
implications of scaling up or down food web models?

● Each species 
competes with itself.

● The predator has only 
one food source.

● Intra- and inter-specific competition.
● Multiple sources of food for predators.

If generalist, the predator can hunt other prey : a
ki
 ↓

Competition for territory should be harsher: g
i 
↑

Competition on basal species should be higher: K
k 
↓



  

From 2D-models to nD-models :
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one food source.
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● Multiple sources of food for predators.

If generalist, the predator can hunt other prey : a
ki
 ↓

Competition for territory should be harsher: g
i 
↑

Competition on basal species should be higher: K
k 
↓

Community-level competition 
processes in food webs strongly 
constrain parameter space relative 
to modelled predator-prey pairs.



  

From 2D-models to nD-models :
implications of scaling up or down food web models?

● Each species 
competes with itself.

● The predator has only 
one food source.

● Intra- and inter-specific competition.
● Multiple sources of food for predators.

Community-level competition 
processes in food webs strongly 
constrain parameter space relative 
to modelled predator-prey pairs.

Prey oscillations may be due to processes 
that are not usually modelled in food web 
models.
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Body mass distributions for species
of the Bialowieza forest

Prey

Predators



  

Estimates of prey intrinsic growth rates

rk∝Mk

−1

4

rk , g=Eg×Mk ,g

−1

4

Intrinsic growth rates of the prey scale 
with species body mass following the 
quarter power law (Savage et al., 
2004).



  

Estimates of prey intraspecific competition rates

β̂k=
r̂ k

max (Rk
Obs)



  

Estimates of predator baseline mortality rates

m̂i=
1
Λi

Max. longevity
(e.g., in captivity)

Database AnAge
(De Magalhães et al., 2005)



  

Estimates of predator density-dependent mortality rates

The phenomenological estimate (ĝ
i
)

Data

H: Year-round average values of predator 
biomass densities are constant.

ri=e
∑

k
f ki(R)

Mi

ri−gi C̄i=0⇒( ĝi)Data=
(r̂ i)Obs
C̄ i

(r̂i)Obs=
365

198
×log (

Ci
Autumn

Ci
Spring

)



  

Estimates of predator density-dependent mortality rates

The phenomenological estimate (ĝ
i
)

Data

H1: Year-round average values of predator 
biomass densities are constant.

The model-based estimate (ĝ
i
)

Model

H1 + H2
H2: g

i
 limits the predator density to a given 

threshold when the population kill a 
maximum biomass of prey.

( ĝi)Model=

(
e

hi×Mi

)−mi

Ci
Autumn×1.5



  

Dynamics for different functional responses and
estimates of density-dependent mortality rates



  

SADs for different functional responses and
estimates of density-dependent mortality rates
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